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26.1 ® INTRODUCTION
Decades of industrial experience have demonstrated the success of process control
in maintaining selected variables near their desired values. Essentially all process
plants apply automation, using feedback and feedforward principles to achieve safe
and profitable production of consistently high-quality product. In general, process
control is very effective when the control system has sufficient time to respond to
disturbances (i.e., the feedback dynamics are fast compared with the disturbance
frequency).

While process control, using the methods presented in this book, is required
for regulating some process variables, the application of these methods may not
be appropriate for all important variables. In some situations the best operating
conditions change, and a fixed control design may not respond properly to these
changes. In other situations, continuous feedback compensation can be too aggres
sive, leading to excessive variation in the controlled variables. Two approaches for
continually improving plant operation are introduced in this chapter to address
these situations. Both use the basic principle of feedback control: using outputs of
a system to influence inputs to the system. However, these approaches involve very
different technologies to address unique objectives. The approaches introduced in
this chapter enhance the good performance achieved through process control.

OPTIMIZATION. Optimization methods find the extremum—maximum or
minimum—of an objective. Generally, the objective function will be profit, which
we aim to maximize. When control objectives were discussed in Chapters 2,7 and
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24, profit optimization was given less importance than safety, environmental and
equipment protection, smooth operation, and product quality. Thus, these shorter-
term objectives must be satisfied before we can turn our attention to profit, although
the company will not survive in the long run without achieving profitable operation.

STATISTICAL PROCESS CONTROL (SPC). The methods presented to this
point in the book can be referred to as automatic process control (APC), because the
control calculation is executed and the final element adjusted "automatically" as a
result of the control calculation. In statistical process control (SPC) the process data
is analyzed for opportunities for improvement, and when an opportunity exists, the
data is diagnosed to ascertain an appropriate action. Thus, SPC involves statistical
analysis of the real-time data, but not necessarily an action, at each execution. This
additional analysis generally results in less frequent feedback actions, which can
improve performance in some processes.

Both of these methods appear in the process control implementation hier
archy in Figure 25.2, which shows them as higher levels in a cascade structure.
Their decisions can be implemented through lower-level process control loops.
For example, optimization systems can adjust the controller set points that regu
late operating conditions such as temperatures and production rates. Alternatively,
the highest-level decisions may involve complex manual intervention; in these
cases, the results are provided in an advisory manner to plant personnel. Examples
of such decisions are a change in feed material type and decisions on regenerating
catalyst. Also, some diagnostic results indicate only that a significant change in
process equipment performance has occurred, and further investigation by plant
personnel is required to ascertain the cause and corrective actions.

Each of these topics is quite large, and entire books have been dedicated to
their coverage. This chapter introduces some basic concepts for each approach and
demonstrates how each relates to process control. It is important to recognize that
most plants require excellent process control, to achieve safe and smooth operation,
before the approaches in this chapter can be implemented and that opportunities
for optimization and monitoring often exist. Thus, the engineer is not confronted
with an "either/or" decision: all approaches in the hierarchy can be implemented
concurrently.

26.2 d OPTIMIZATION
The control design procedure in Chapters 24 and 25 allocates manipulated vari
ables to achieve good dynamic performance, which is measured by the (hopefully,
small) variability in key variables. Often, the number of manipulated variables
exceeds the number of controlled variables. In these situations, safe operation and
good product qualities can be achieved by manipulating selected process inputs
that give the best control performance, and some manipulated variables can be
maintained at arbitrary, constant values within an acceptable range. Alternatively,
the excess manipulated variables can be adjusted to increase profit; these excess
manipulated variables will be referred to as optimization variables (Marlin and
Hrymak, 1997). Some approaches for achieving high profit with excess manipu
lated variables have already been introduced; for example, the variable-structure
controls in Chapter 22 provide the means for utilizing manipulated variables in a



specified order, with the proper order based on the process economics. In this chap
ter, additional optimization approaches are introduced that address more complex
situations, where a strategy for adjusting the excess variables is not as straight
forward to determine and may change frequently. Three methods for optimizing
process economics through adjusting optimization variables are discussed below
and demonstrated with process examples.
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I. Process Control Design
The first step in designing optimizing controls, after the regulatory controls have
been designed, is an analysis to determine the proper strategy for the optimization
variables. This analysis uses models of the process or plant data to answer two
important questions:

1. Do incentives exist for optimization? In some situations the profit will not vary
significantly as the values of the excess manipulated variables—the optimiza
tion variables—change. When the profit does not change, the optimization
variables can be maintained at constant values selected for convenient op
eration. When the profit is significantly different for various values of the
optimization variables, the next question is evaluated.

2. Is the optimal strategy constant and simple? When the profit is sensitive to the
optimization variables, the response of these variables to external changes,
disturbances, and set point changes should be evaluated. In some cases, the
optimal response to these external changes (i) is nearly the same for all ex
pected operating conditions and economics and (ii) can be implemented via
straightforward real-time calculations as part of the control strategy.

When the answers to both questions are yes, a control strategy can be designed
to approximate the best performance. Examples of this approach that have al
ready been presented include the valve position controller in Figure 22.13 and the
production maximization in Figure 22.14; in these examples, the best operating
conditions were close to limiting values of key variables (i.e., they were "pushing
constraints"). The method for process control design introduced in this subsection
may not result in as simple a policy as operating near a constraint, but the con
cept is the same: implementing an operating policy that has been determined to be
close to the best possible. The following example demonstrates the approach for
answering the two questions above and, when appropriate, building the strategy to
maximize profit via control calculations that do not explicitly involve economics.

EXAMPLE 26.1.
Steam is used in most process plants for power, driving turbines, and heat transfer.
To satisfy the large and variable plant demands, many process plants have their
own boilers and steam distribution networks. Typically, the boilers are arranged
as shown in Figure 26.1, with all boilers providing steam to a single pipe, termed
a header, from which all consumers are supplied. The total steam demand can
be provided by any combination of individual boiler productions that sums to the
total demand. The boiler productions are often termed loads, expressed in units
of fraction of the maximum steam from one boiler. This convention is used in the
example, with all boilers having the same maximum and the total consumer steam

Methods For Optimization

I. Process control design
II. Model-based optimization
HI. Direct search



862

CHAPTER 26
Continual
Improvement

Steam to consumers
D

rSUlre
I

f©
"I

r©

FC

I

Ff
Fuel

Y = dX + e

(a/m) Automatic- Same to
manual switch other boilers1 I.

FIGURE 26.1
Multiple boiler and steam header.
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demand expressed as a multiple of the maximum possible steam production from
one boiler.

The basic requirement for process control is to ensure that the steam required
by the consumers is produced by the boilers; in other words, the consumers and
producers of steam are "in balance" at all times. This is achieved by controlling
the header pressure by adjusting the fuel to the boilers; any combination of steam
productions from the four boilers that sums to the required total satisfies the basic
objective. The percent efficiency for a boiler is defined as 100 x (energy trans
ferred to the water)/(total heat of combustion); note that the energy to the water
includes preheating the water, vaporization, and superheating the steam. Since
the efficiencies vary as the demand changes and are different for different boilers,
opportunity exists for influencing profit by using the minimum fuel, while satisfying
the total demand from the steam consumers. In this example, the boiler efficien
cies, from Cho (1978), are given in Figure 26.2.

Using this data, the process performance can be determined for any distribu
tion of boiler loads at any steam production, D, which is the consumer demand. As
explained in Chapter 2, the additional information required to calculate the ben
efits for automation is the distribution of plant operating conditions, which is here
defined by the variability of the consumer demand. For this example, the demand
is assumed to be uniform over the range of 0.8 to 2.5, as shown in Figure 26.3; for
a real situation, this distribution would be determined based on process data.

The fuel requirements for any steam demand, which is the direct measure of
economics, can be determined by the application of equation (26.1).

= E iFs\m)i JHq — Hsm)
AHcirji/XOO)

(26.1)

where Ff — total flow of fuel to all boilers
(^stm)« = flow of steam from boiler /

Ho = specific enthalpy of water to boiler
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FIGURE 26.2
Boiler efficiencies for Example 26.1.

Optimization

4.00

I 3.00 -

2.00 -

55 1.00 -

1 2 3 4
Frequency interval, j

FIGURE 26.3
Data to calculate the average boiler performance.

Hsm = specific enthalpy of steam to the header
AHC = heat of combustion of the fuel

N = number of boilers (in this example, 4)
r)i = efficiency of boiler 1 (see Figure 26.2)

The total steam demand D is determined by the consuming process units and
is variable. The best boiler operation satisfies the steam demand and minimizes
the total fuel or, equivalent^, maximizes the average efficiency. Also, the best
operation is the average of the operations at the different demands weighted by
the fuel at each. The maximization is defined mathematically in equations (26.2).
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Dj = J2iFsim)i
, / = i J7

Mj = fo^stm)? + biiFstm)i + Ct]j
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M
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E Fj E [(^stm),];

(26.2a)

(26.2b)

(26.2c)

(26.2d)

where Fj = frequency at interval j (0.20 for all j in this example)
M = total number of intervals (in the example, 5)

Fsttn > 0.0

The solution to this nonlinear mathematical problem requires optimization
mathematics, which are not central to this introductory coverage; this topic is
explained elsewhere (Edgar and Himmelblau, 1988), and good software exists,
such as GAMS (Brooke et al., 1992) and SPEEDUP (Aspen Technology, 1994).
Thus, the results of the numerical solution of problem (26.2) are given in Figure
26.4 without details on the optimization method used. The best operation gener
ates the required total steam by adjusting the steam produced from all boilers in
response to a change in the demand. The approach gives the highest average
efficiency, 87%. This complete optimization could be implemented as part of a
control strategy but would require an optimization problem (26.2) to be solved
frequently in real time.

The values of the optimization variables change as disturbances occur. In
Section 26.2 two questions were posed in evaluating operations optimization. First,
do incentives exist for optimization? This can be answered by determining the
plant performance (here the average boiler efficiency) under the standard type of

Optimal boiler operation
Average efficiency = 87%

1.0 1.2 1.4 1.6 1.8 2.0
Total steam demand

2.4 2.6

FIGURE 26.4

Optimal boiler load allocation for Example 26.1.



control. This base case is taken to be a load distribution for all boilers, so that the
load of each boiler at any steam demand D would be D/N. The average efficiency
for this example under the "equal loading" base case would be 86%, which is 1%
lower than the optimal operation. Since this could represent a substantial increase
in fuel consumption, incentives exist, and the second question will be considered.

The second question involved a simple control strategy that could, at least
partially, replace the complex optimization calculations for real-time implementa
tion. Since simplicity is always a goal—although not at the expense of poor product
quality or significant loss in profit—an alternative approach to achieve partial op
timization is evaluated. The simple alternative is to maintain the boiler loads at
constant ratios, with the values of the constant ratios selected to give good (but
suboptimal) economic performance. This design problem—which is solved only
once, during design, to give parameters to be used in the real-time calculations—is
the same as equations (26.2a) through (26.2of), but with the addition of equations
(26.2e) for boilers i =2,N and interval j = 1, M:

[ i F s m ) i ] j = R d i F s t m ) x ] j ( 2 6 . 2 e )

The solution of equations (26.2a) through (26.2e) determines the best values for
the load ratios at each demand Dj. Note that fl, is the ratio of the steam from the /th
boiler to the steam from the first boiler and that, once determined, this ratio does
not change when the total steam demand changes. Thus, the resulting control
strategy involves very simple calculations.

The solution of this problem is given in Figure 26.5. As expected from the
optimal results, the ratios are selected to have a high steam production from the
more efficient boilers. The average efficiency from this much simpler approach is
only 0.25% less than the exact optimum for the wide range of operating conditions
in Figure 26.3. Considering the likely accuracy of the boiler efficiency curves, this
difference does not seem to be significant, and the simpler ratio control design
would usually be selected. The ratio control could be implemented in a manner that
would not influence good performance of the very important pressure controller.
As shown in Figure 26.1, the pressure controller output influences every boiler fuel
flow directly, and the controller output is modified to allow a ratio to be adjusted.
The coefficients in the ratio calculation, dt and ex, would be determined from Figure
26.5 and would not be adjusted in real time.

An important lesson from this example is that tracking the best operating
conditions does not always require extensive real-time calculations. The proper
control calculations can be ratio control (this example), constraint pushing using
signal selects, split range, or valve position controller. The correct design often
requires careful process analysis to give a structure that closely follows the best
operation in real-time control calculations.

This first approach, using a control design to approximate optimal operation, is
appropriate when the control calculation need not change with time. For example,
the ratios in Example 26.1 do not change as long as the efficiency curves for
the boilers do not change with time. The result is a simple method that does not
calculate or estimate the profit as part of the control calculation. In contrast, the
next two approaches can respond to changes in plant performance by using process
measurements in the calculation of profit, at the cost of much greater complexity.
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Boiler Ratio Control
Average efficiency = 86.75%
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FIGURE 26.5

The best ratio boiler load allocation for Example 26.1.

II. Model-Based Optimizing Control
This second approach can be used when incentives exist for adjusting the opti
mization variables but the method for optimization cannot be implemented in a
straightforward strategy such as constraint pushing or ratio control. In this ap
proach a mathematical model of the process is used to calculate the best operating
conditions for the current situation, and inevitable model errors are corrected (at
least partially) using feedback measurements. Many technologies are available for
real-time, model-based optimization. One of the simpler and frequently employed
model-based approaches is introduced in the next example; it uses a linear model
and a simple feedback updating method. When linear models are adequate, the
model-based optimization can use the highly reliable linear programming solution
of the optimization problem. When the feedback is introduced by adjusting the
"bias" term in the linear model, the optimizing controller can be formulated in the
model-predictive structure.
EXAMPLE 26.2.
In some cases, linear models can represent a process with satisfactory accuracy
for the purpose of optimization of single process units. An industrially important
control problem is the blending of several materials into a product mixture, with
the control objectives to achieve the specified production rate and to maintain
the product qualities within their limits. In this example, several hydrocarbon com
ponents are blended to produce gasoline. The product qualities, octane number
(OCT) and vapor pressure (RVP), are important for the performance of the gaso
line in an internal-combustion engine (Stadnicki and Lawler, 1985). The component
flows can take any values from zero to the maximum amount available.

This process is shown in Figure 26.6, and the linearized model is

(RVP)Fr = £/•,/} (26.3a)
/=i
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Blending process with optimizing, model-predictive
controller.

(OCT)Fr

F j

L

(26.3b)

(26.3c)
i = i

where OCT = product octane
oi = component octane

RVP = product vapor pressure
r, = component vapor pressure

FT = product flow
Fj = component flow
L = number of component flows (4 in this example)

In this example, the same model structure is used to represent both the true plant
and the model used for control (i.e., Gm in Figure 26.6). The parameters in the
controller model are not identical to those of the plant; these differences always
occur in practice due to model error.

Note that the dynamics are so fast that the process is essentially at steady
state, so the controller model is algebraic [G„,is) = KJ. The controller in the
model predictive structure involves an inverse of the process model. However,
the process and the process model have more manipulated than controlled vari
ables; four manipulated flows and only two controlled product qualities. In this
situation many combinations of the manipulated-variable values can satisfy the
controlled-variable values. This flexibility can be capitalized upon not only to satisfy
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the controlled-variable bounds in equation (26.3), but also to maximize profit by
using the lowest-cost components. This flexibility is advantageous, but it leads to
a mathematical problem that offers more challenge than taking the inverse of a
square matrix. The statement of the problem to be solved by the controller Gc is

max profit = VTFT - J^ V/F,
F ' / = i

subject to

(RVPrciJFy < jN/F, + Fr(Fm)RVp < (RVPmax)Fr

L

(OCTmin)Fr < J^OiFi + FTiEm)ocr < (OCTmax)Fr

(26.4a)

(26.4b)

(26.4c)

(26.4d)

(26.4e)

i= i

F t - £ , F,
1 = 1

0 < Fi < (F/)max
where VT = value of the product

V/ = value of each component
Em = feedback correction defined in equations (26.5), which would

be zero if no feedback were implemented

Mathematical problems of this structure—linear equations that include both
equalities and inequalities—are well known in applied mathematics as linear pro
gramming (Best and Ritter, 1985). The solution to this problem gives the values
of the four manipulated variables (flows) that satisfy all equations under "subject
to" and also maximizes the profit. The number of equations that are equalities at
the solution is the number of original, strict equalities (26.4d) and the number of
inequalities (< or >) that are at their limits at the solution. This forms the set of
equations to be solved by adjusting the same number of manipulated variables.
In this case, the solution contains one equality (26.4d) and two inequalities due
to limits on the product quality (26.4b and 26.4c). Thus, three manipulated flows
must be adjusted to values that satisfy the equalities. Since four flows exist, one
flow is not specified, and linear programming theory demonstrates that this "ex
cess" optimization variable must be at either its upper or lower limit, depending
on which limit results in the highest profit.

Efficient computer programs are available to solve the linear program in equa
tion (26.4), which is shown as Gc in Figure 26.6. If no feedback were included, the
model would be used in a feedforward prediction of the correct flows to optimize
the operation. The feedback control system in Figure 26.6 uses measurements of
the product qualities to correct the model. Many possible methods can be used
to correct the model, and in principle, all coefficients (<?,• and rt) could be adjusted
when sufficient data is available. In this example, only the simplest feedback is
considered, in which the difference between the measured value of the product
quality and the model prediction is used to correct the model "bias" term. This is
essentially the same type of feedback used in the model predictive controllers in
Chapters 19 and 23. Thus, the Em terms in equations (26.4) are

(26.5)
(£m)RVP = RVPmeas — RVPrao(jel

(£ro)0CT = OCTmeas _ OCTmodel

with the subscript "meas" indicating the measured values in the product stream.



While this type of feedback was shown to provide zero steady-state offset for
steplike disturbances for the controllers in Chapter 19, it is not guaranteed to
provide exact tracking of the true plant optimum for all situations of model errors,
although it may under some conditions. Conditions for its success are given by
Forbes and Marlin (1994).

In this example, the model used in the controller differs from the true plant per
formance, as would essentially always occur. The component qualities are given
for the true plant and the controller model in Table 26.1. The dynamic response for
this case under closed-loop control, with the model update equations (26.5) and
the optimization problem (26.4) solved every controller execution, is given in Fig
ures 26.7 through 26.9. In Figure 26.7, the component flow rates are shown for each
controller iteration. The first iteration was performed without feedback (£m = 0),
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Response of vapor pressure under optimizing control.
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Component Product

System F i F2 F3 F4 H i g h L o w

Model Octane 88 64.5 92.5 98 — 8 8 . 5
Vapor pressure (psi) 5 14 138 5 1 0 . 5 —

Plant Octane 91.8 64.5 92.5 96.5 — 8 8 . 5
Vapor pressure (psi) 4 12 138 7 1 0 . 5 —

Model Value ($/bbl) 34 26 10.3 37 33
Model and plant Maximum flow bbl/d 12000 6500 3000 7000 7000 (fixed)

1 bbl (barrel) == 0.159 m3; psi = 6.89 kPa
n n a mU W l t M i l U ^ ^ I H V i HSftlHWKKSSBBSffiBKIiSKSiS*!

so these results are a feedforward prediction of the best operation. After each
controller execution, feedback measurements were taken and used to calculate
the corrected biases E,„ to be used by the controller for the next iteration. By the
completion of the eighth iteration, the control system, using the feedback model
corrections, achieved operating conditions that maximize profit in the true plant.
The actual measured product qualities are shown in Figures 26.8 and 26.9. Both
qualities should be within their upper and lower limits and, at the optimum, arrive at
a limit—the upper limit for vapor pressure and the lower limit for octane, because
this operation maximizes profit. Note that the qualities violate their limits during the
transient responses in spite of the controller containing explicit equations for these
limits, because the model errors are large enough to lead to significant, although
temporary, violations of product quality limits in this example.

In general, many decisions must be made in designing and implementing a
model-based real-time optimizer; some of these are model structure, parameters
to be updated, measurements used for updating, and the updating calculation (e.g.,
least squares). Some guidance on these decisions is provided by Forbes and Marlin
(1994) and Krishnan et al. (1993). Industrial experience indicates great benefit for
real-time optimization (e.g., Fatora et al., 1992; Larmon, 1977; Yang and Wald-
man, 1982). The best experiences are reported for plants with accurate models and
good measurements, so that the feedback model updating leads to accurate rep
resentations. Also, substantial improvements occur more often in complex plants
with many variables and changing conditions, where control structures, such as
operating close to the same constraint, are not likely to yield the highest profit.

III. Direct Search
This third approach can be used when incentives exist for adjusting the optimization
variables, but the strategy for optimization cannot be implemented in a straightfor
ward strategy such as constraint pushing or ratio control, and accurate models do
not exist. In these situations, a very simple, locally accurate model of the process



is determined empirically from plant data. This model is used to determine the 871
direction in which changes in the manipulated variables will increase profit. The i#a»y«MM^
plant operating conditions are then changed a small amount in this direction, and Optimization
a new, updated model is evaluated. The direction for optimization is determined
again from plant data, and another step is taken.

This iterative approach has been used for many years to study plant behavior
and determine improved operating conditions. When the experiments are time-
consuming and expensive, effort must be made to reduce the duration of the study;
then, only a few experiments are performed and careful statistical evaluations are
used to determine whether further improvement is likely and, if so, which direction
is the best. Infrequent application of this concept in studies or "campaigns" is usu
ally termed evolutionary operation, a term coined by Box and Draper (1969), who
provided procedures, guidelines, and statistical tests for this periodic approach.
While the periodic approach minimizes disturbances to the plant resulting from its
designed experiments, it cannot track the best operation when it changes frequently.

The concept of building a locally accurate model for determining the direction
of optimization can be extended to real-time, feedback control. Many algorithms
are possible, and one of the simplest is discussed here (Bozenhardt, 1986). The
concept is shown in Figure 26.10, where the last few values of the optimization
variable and calculated profit are plotted. Recall that the true plant profit is never
known exactly; thus, an estimate of profit must be calculated from plant mea
surements. The direction in which the optimization variable should be changed
to increase the calculated profit can be determined from the data in the plot. One
method for determining the direction is to fit some of the most recent data with
a straight line by least squares (Box et al., 1978). The slope of the line gives the
correct direction (i.e., whether the optimization variable should be increased or
decreased). The expression for the slope when there is one optimization variable is

Np

Z^(jj "~ PaveX-^i" — -^ave)
S = ^ — - ( 2 6 . 6 )

Np
Z^,iXi — -^ave)
i=l

Optimization variable, x
FIGURE 26.10

Using past data to determine the search direction.
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where Np = number of points used in calculating the slope
F,- = profit at point i

Fave = average profit (in Np data points)
S = slope

Xj = optimization variable value at point i
Xave = average value of the optimization variable (in Np data points)

In this method, the optimizing controller makes a change in the optimization
variable equal to AX[sign(5)], with the step size AX a fixed value independent
of the magnitude of the slope. Note that this algorithm can be extended to more
manipulated variables by modifying the expression for the slope. The following
parameters appear in this algorithm and their selection and tuning are demonstrated
in the next example.

CALCULATED PROFIT. The calculated variable should be directly related to
plant profit and should be relatively insensitive to measurement noise and process
disturbances.

OPTIMIZATION VARIABLE(S). The manipulated variables that yield ex
cellent feedback control of safety-related variables and product quality should be
allocated to these higher-priority tasks. The additional manipulated variable(s) that
influence profit can be adjusted slowly to improve profit.

NUMBER OF PAST DATA POINTS. Past data provides a filter that makes
the slope less sensitive to measurement noise; for this purpose, a large number
would be good. However, too long a memory has two disadvantages. First, long
memory gives importance to very old data that might not represent the current
plant performance. Second, long memory requires many points on the "other side"
of the maximum before the slope changes sign, which leads to large oscillations
about the optimum operating point.

STEP SIZE. The step size should be small so that the change does not signifi
cantly influence important controlled variables, such as product quality. However,
the step size should be large enough to cause a measurable change in the profit
calculated from noisy plant measurements.

EXECUTION PERIOD. The approach to direct search described in this section
requires the plant to achieve steady state between executions for measured values
to represent the profit properly. Thus, the minimum execution period must be long
enough for the process to achieve steady state: approximately the dead time plus
four time constants for a first-order-with-dead-time process. Other approaches
have been investigated that estimate parameters in a dynamic model and use the
steady-state gain to determine the best direction (e.g., Bamberger and Isermann,
1978; Garcia and Morari, 1981).

CALCULATED DIRECTION. This method bases the direction on the slope.
It would be possible to fit a higher-order curve to the data; however, the use of



process measurements in calculating the profit estimate introduces noise into the
method, which usually leads to unreliable estimates of coefficients of the higher-
order terms.

EXAMPLE 26.3.
The steady-state operation of the chemical reactor in Figure 26.11 is to be opti
mized in response to unmeasured disturbances. The profit is maximized by achiev
ing the highest possible concentration of product B in the reactor effluent.

Information: The chemical reactions are
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B
where

1. The rate expressions -rA = kAo exp(-£Ao/RT) and rc = fcCoexp(-£Co/RT)
with nominal values of kAo = 17748.5 min-1, kCo = 643,048 min-1, EAo/R =
3000 K, and ECo = 4000 K.

2. The temperature is constant at 330 K.
3. The heat of reaction, heat transfer, and work are negligible.
4. The volume is constant and the contents are well mixed.
5. The flow rate is 2.65 m3/min.

An optimum concentration of B (CB) exists because too low a concentration of
the desired product B is not optimal, and a large concentration of B leads to
excessive losses of B to undesired byproduct C. The conversion is influenced
by the residence time in the reactor; therefore, the manipulated variable for this
reactor is selected to be the volume of liquid in the reactor.

The optimum operating condition for the parameters in this example is V = 1.0
m3, which gives CB = 0.556. However, the plant is subject to disturbances that
require us to frequently change the operations (level) to obtain the highest CB
possible at the time. For this example, the disturbance involves occurrence of an
inhibitor that decreases the rate of the first reaction; fcA0 is decreased from 17,748.5
to 10,000 min-1 when the inhibitor is present. The steady-state behavior of the
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FIGURE 26.11
Stirred-tank reactor with direct-search optimizing

control.
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Concentration of B for two situations in Example
26.3.

reactor is shown in Figure 26.12 for two situations, no inhibitor and inhibitor present.
Naturally, many other disturbances are possible, and the real-time optimization
approach should respond well to all disturbances.

The direct search optimization approach is applied to the reactor problem
using the following parameter values:

P r o fi t m e a s u r e = C b
Optimization variable = V(with T, Cao, and F constant)
Number of points in memory = 3
Step s ize (A V) = 0 .05 m3
Execution period = to achieve steady-state
Calculated direction = slope from equation (26.6)

The performance of the direct-search optimization for the ideal situation, a plant
without measurement noise, is shown in Figure 26.13. At controller iteration 20 the
inhibitor in the feed increases in a step, and at iteration 50 it returns to its original
value of 0.0. As a result of this disturbance, the concentration CB decreases; then
the search method adjusts the reactor volume V to achieve the maximum concen
tration of B for the current situation. Note that the optimum volume is shown in the
figure only to aid in evaluating the performance of the optimizing controller; the
optimum volume would normally not be known and was not used by the search
algorithm.

The performance of the direct search for a realistic situation, in which the
measurement of CB includes noise, is given in Figure 26.14. The same scenario is
involved in this data. As expected, the optimization performance is not as good,
with some "wandering" around the optimum, but the algorithm was successful in
changing the optimization variable in the proper direction and about the correct
magnitude. Again, the true optimal value of the volume was not used by the direct-
search controller.
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Direct-search optimization without measurement noise.
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Direct-search optimization with measurement noise.
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Automatic process control (APC) using feedforward and feedback principles iden
tifies a deviation from desired operation (i.e., from the set point or points) and
makes an immediate adjustment in a manipulated variable. Thus, automatic pro
cess control does not eliminate the cause of poor operation (i.e., the disturbance);
the adjustment is selected to compensate for the effects of the disturbance and
maintain the controlled variable at its desired value. Since the sources of distur
bances have not been affected, the APC approach leaves the process susceptible
to future disturbances from the same source. In contrast, statistical process control
(SPC) has as a goal the identification and elimination of disturbances. By this
approach of removing the source of disturbances, the long-term effect of SPC is to
reduce variability in process operation and improve product quality. Since some
variability in process operations is inevitable, statistical process control alone can
not adequately control most process operations. Fortunately, SPC and APC can
provide complementary improvements and can be applied to the same process to
improve the overall performance.

Statistical process control identifies deviations in process performance using
real-time measurements. The base-case performance is established, not from a
fundamental mathematical model, but rather from experience; thus, empirical data
is used in establishing the typical variability in process variables. This variability
results from many (small) disturbances and sensor noise, which are considered to be
unavoidable. This typical variability is referred to as common-cause, which results
in consistent variability over time. As each new set of process data is collected, it
is evaluated by comparison with the common-cause variability, and the possibility
of a significant change in process operation is evaluated. Significant deviation
from the common-cause variability would then result from a disturbance that is
not typical; this is referred to as a special (or assignable) cause of variability. If a
change has occurred, the process is diagnosed to determine the proper corrective
action. The corrective action may be as simple as adjusting a final control element,
or it might be as involved as changing the source of feed material or catalyst to
prevent the cause of the disturbance.

Automatic process control compensates for deviations from set point. In contrast,
statistical process control has the goal of identifying and eliminating causes of vari
ability in key process variables.

Statistical process control is now demonstrated by way of its best-known method.

Shewhart Chart
The analysis of the process data to quickly and easily recognize changes in pro
cess performance is facilitated by the Shewhart chart, shown in Figure 26.15.
The Shewhart chart provides a visual display of recent process data of a single
measurement along with limits representing the typical, common-cause variabil
ity. The limits are determined empirically from "good" process operation and are
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typically set to include 99.7% of the data; if the data is normally distributed about
its mean, the limits are located ± three standard deviations from the mean. The
limits are referred to as the upper and lower control limits (UCL and LCL). Com
paring a measured value with these limits is essentially a statistical hypothesis test
on whether the mean of the variable has changed; this test could be calculated
in a standard manner, although the clarity provided by the visual display of data
with the limits increases the appreciation of the effects of variability (Montgomery,
1985). Also, modifications are available for variables with nonnormal distributions
(Jacobs, 1990).

When the process is experiencing typical variability, a situation often referred
to as "in the state of statistical control," most data will be within the limits. Although
there is variation of the measurement within these limits, this variation is accepted
as inevitable and no action is taken, whereas automatic process control makes a
feedback compensation for any nonzero error. If the measured value exceeds the
limits, the SPC approach requires a diagnosis to determine the special or assignable
cause and requires the implementation of the appropriate corrective action.

EXAMPLE 26.4.
Reconsider the chemical reactor in Example 26.3 without the optimizer. The liq
uid level is controlled and the concentration of component B is measured online.
Describe how the process could be monitored using a Shewhart chart.

The concentration of B is the key indicator of process performance and can be
plotted on a Shewhart chart. Historical data, not shown, has been used to establish
the common-cause variability and the control limits for the concentration. Some
data are plotted in Figure 26.15 for this example. In the initial data, the concentra
tion remains within the action limits, although it varies due to the common-cause
disturbances: small changes in the level, flow, reactor temperature, and feed con
centration. At a time indicated by an arrow, the concentration of B deviates from its
usual range and remains outside this range for an extended time, which indicates

Statistical Process
C e n t e r l i n e C o n t r o l ( S P C )I.
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a special-cause disturbance has occurred. In this example, the source of the dis
turbance is not obvious from the data, so additional diagnosis would be required.
For example, the measures of the key process variables could be checked for
errors, the reactor temperature could be determined, and the feed composition
could be measured. As noted in Example 26.3, the inhibitor concentration is an
important factor in the process performance and could be determined by labora
tory analysis. If the inhibitor concentration has caused this deviation, as is likely
for such a large disturbance, the underlying source of the disturbance should be
determined; for example, the reason could be contamination in storage or poor
quality from a supplier. Whatever the cause, the corrective action should not only
eliminate the current disturbance but also prevent future occurrences. Notice that
the optimization results in Example 26.3 can only give the best performance with
a given level of inhibitor, which can represent a substantially lower concentration
of B; only eliminating the disturbance can restore this process to its desired high
concentration of B.

Reducing Var iabi l i ty
The distinction between APC and SPC can be clarified and the strengths of each
can be demonstrated by considering two examples which could involve the same
process, but experiencing different disturbances. Consider the packed-bed chem
ical reactor in Figure 14.11. The objective is to maintain the concentration in the
effluent measured by the sensor at a desired value, and concentration can be influ
enced by adjusting the heating medium valve in the reactor preheat exchanger. The
performances of this process with and without feedback control are considered for
two different scenarios.

SCENARIO I. For this scenario, the initial data is given without any feedback
action in Figure 26.16. The cause of the variation for Scenario I is essentially
random, uncorrelated noise about the constant mean value. For example, this could
occur if (1) no (significant) disturbances occur in the reactor operating variables
and (2) the sensor experiences a random error each time a sample is analyzed.
In this situation, the proper operating policy for this common-cause variability is
to make no adjustment to the valve, since the current error cannot be corrected
by the adjustment and the current deviation does not provide an indication of the
future deviations. As shown in Figure 26.16, implementing a standard proportional-
integral feedback control calculation will increase the variability in the product
quality. Thus, the SPC approach provides better performance for regulating the
reactor in Scenario I.

SCENARIO II. In this scenario, the initial data is given without any feedback
action in Figure 26.17. The variation for Scenario II is due not only to random
sensor error but also to slower-changing disturbances in some process input vari
ables such as feed composition and heating medium temperature. We can observe
that the variability of the product composition appears correlated in time; that is,
the composition includes a slow drift along with some random noise. In this situa
tion, the current deviation provides an indication of the likely future deviations, and
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Dynamic response for Scenario I, in which feedback degrades performance.

PID control begins here

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0
Time (min)

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0
Time (min)

FIGURE 26.17

Dynamic response for Scenario II, in which feedback degrades performance.
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the feedback dynamics are fast enough that adjustments in the valve can com
pensate for the slowly changing disturbances. Thus, automatic process control is
appropriate, as shown in Figure 26.17, which shows a decrease in the variability
when a proportional-integral feedback controller is implemented. Thus, the APC
approach provides better performance for regulating the reactor in Scenario II.

The comparison of the performance of SPC and APC for these two scenar
ios demonstrates that both have many applications. When the variability without
feedback compensation is nearly random, so that feedback corrections cannot com
pensate for the deviations, an SPC approach is appropriate. When the variability
without feedback compensation is due to slowly varying disturbances, APC can
be effective in reducing the variability. For further discussion on this point, see
MacGregor(1990).

Variability off the Manipulated Variable
Another distinction between APC and SPC stems from the frequency of corrective
actions taken. APC involves an action every time the controller is executed; thus,
it must be possible to adjust the final element without disrupting the process op
eration, which is possible with standard control valves. As a result, APC reduces
the variance of the controlled variable while increasing the variance of the manip
ulated variable. This situation is sometimes described as "moving" the variability
from the important controlled variable to the less important manipulated variable,
as demonstrated in Figure 26.16. This situation has been discussed previously and
has been shown in Figures 7.8,7.9, 13.18, 23.10, and 24.19.

In contrast, SPC involves infrequent adjustments—only when the measure
ment exceeds the control limits. This is advantageous for systems in which the cost
of the control action is considerable. Examples of costly adjustments are chang
ing the reactor catalyst, changing the feed material, and stopping and adjusting
machinery. Since the special-cause disturbances occur infrequently and the action
limits are set to result in few "false alarms" (only 3 in 1000), the SPC approach,
when applied to appropriate scenarios, reduces the adjustments in the manipulated
variable required to maintain the controlled variable within the upper and lower
control limits.

This perspective suggests an approach for diagnosing process performance
for variables that are under PID feedback control. In situations with effective feed
back, the controlled variable may not deviate greatly from its set point, although
significant disturbances occur. However, the occurrence of these disturbances can
be determined by monitoring the manipulated variable, because it must be adjusted
to compensate for disturbances.

Process Capability
The discussion to this point has addressed the variability of key process variables;
now, the requirements of the market are added to the considerations. In particular,
the comparison of the variability (here, assumed normally distributed) with the
required minimum variability is an important factor in evaluating the success of
the process operation. The comparison of actual with required variability is termed



the process capability, defined as follows:

Capability index = Cp =

CPk = min

USL - LSL
6o

U S L - X m X m - L S L
3<7 3o

(26.7)

(26.8)

where Cp = process capability index
CPk = process capability index

USL = upper specification limit on acceptable variation in product
variable

LSL = lower specification limit on acceptable variation in product
variable

Xm = mean value of the variable
cr = standard deviation of the actual variability of the product

quality

The variable Cp is meaningful when the target for the product specification is
the mean of the range. The Cpk is meaningful when the target is not the mean of
the range. The best situation occurs when the variability of the process is small
compared with the variability allowed in the market:

Cpjt^C 1 Considerable "off-specification" material is produced
Cpk% 1 Most production satisfies specifications
CPk^ 1 Nearly all production well within the specifications

The capability index is a useful measure for evaluating the current process perfor
mance against the market needs. However, continual improvement efforts should
not cease when Cp and CPk are greater than 1.0.
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Conclusions

The reduction of variability should be a continual effort. The goals include die
reduction in number of times special causes occur and the reduction of the common-
cause variability.

The producer of the highest-quality product often can increase total sales or profit
margins, and experience has shown that the lower-quality producers often cannot
sell their products.

26.4 B CONCLUSIONS
Two approaches for continual process improvement have been introduced in this
chapter. Optimization is appropriate when the operating profit changes significantly
because of frequent disturbances and there are available manipulated variables that
can be adjusted to increase the profit without degrading the product quality. These
variables tend to be set points of the underlying regulatory process controls. Thus,
optimization generally functions as the highest level in a cascade control structure.

Statistical process control has as its goal the reduction of variability, primarily
in the key product qualities. In contrast to automatic process control, statistical
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process control involves actions that address the root cause of the disturbance.
By diagnosing and eliminating these causes, the number and severity of future
disturbances are reduced, and the process performance is improved.

These approaches have merely been introduced in this chapter. The reader
is encouraged to refer to the References and Additional Resources for further
information. These methods can provide substantial improvement when applied
continually to a process that is operating under excellent automatic process control.
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The concepts of SPC can be extended to multivariable processes, although the
direct, independent monitoring of many independent variables via Shewhart charts
would be tedious and difficult to interpret. An alternative method is described in

Kresta, J., J. MacGregor, and T. Marlin, "Multivariate Statistical Monitoring of
Process Operating Performance," Can. J. Chem. Eng., 69, 35-47 (1991).

QUESTIONS
26.1. Design an optimizing control strategy for the process in Figure Q26.1 to

satisfy the following objectives:
(1) Tight control of the flow rate leaving the furnace via the coil
(2) The coil outlet temperature (TC) maintained close to its set point
(3) The total fuel consumption minimized

Design a control strategy that achieves these objectives. Clearly define the
measurements, calculation of the performance function, and the control
algorithm and explain how interactions among the strategies will be con
sidered.

IQ
(£)eft-*

FIGURE Q26.1

26.2. Discuss the key elements of the single-stage refrigeration circuit in Figure
Q26.2.
(a) Design regulatory controls for this system that satisfy the demands of

the consumers. Two consumers are shown as a heat exchanger (tem
perature controller) and a condenser (pressure controller).

ib) Add necessary controls to minimize the energy consumption (i.e., min
imize the steam consumption) while satisfying the consumers' de
mands. You may add sensors and add and delete valves.

263. The plant has byproducts that can be used as fuel or must be discarded with
no value. Thus, all excess fuel should be consumed, if possible. Design a
control strategy that provides good coil outlet temperature control and that
consumes all possible excess fuel for the fired heater in Figure Q26.3. Note
that (1) the two fuels have different compositions and (2) the excess fuel
availability can change quickly and by large magnitudes.

26.4. In some plants, incentives exist to supply heat to the process via one (or a
few) large, efficient fired heaters. The energy is transferred to consumers
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throughout the plant via an oil stream with good heat transfer, heat capacity,
and thermal stability properties. Design a control strategy for the process
in Figure Q26.4 that satisfies the following objectives, listed in order of
decreasing importance.
id) Control T3 and T4.
ib) Control T6 and T7.
ic) Determine the best value for the fired-heater outlet temperature, i.e.,

the value that satisfies id) and ib) at minimum fuel.
id) Recover as much energy as possible at the highest temperature.
You may add sensors and add or delete piping and valves.

Excess fuel
(should use as much
as possible)

Adjustable fuel

FIGURE Q26.3

FIGURE Q26.4
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26.5. The control design in Figure Q26.5 is proposed for maximizing the pro
duction rate in a chemical plant. The likely equipment limitations are the
maximum reactor heating, the maximum flow of vapor from the flash, and
the maximum reboiler duty in the distillation tower. The proposed design
may not function well because of the long dynamics. Suggest enhance
ments that would ensure that id) the maximum vapor flow from the flash
is not exceeded and ib) the product quality in the distillation tower would
be controlled close to its set point.
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FIGURE Q26.5

26.6. Derive the general equation for the direct search algorithm in Section 26.2
for any number of manipulated variables. Also, discuss potential drawbacks
with the proposed method when applied to processes with more than one
optimization variable.

26.7. The dynamic plots in Figure 26.13 have the iteration numbers as the ab
scissa. Determine an appropriate time between iterations for this process.

26.8. Discuss additional considerations that should be included in a real-time
boiler optimization as presented in Section 26.2. How could each consid
eration be integrated into the mathematical statement of the optimization?

26.9. Some Shewhart charts include warning limits, which are between the mean
and the control limits. Discuss (a) the interpretation one could place on a
single violation (or several sequential violations) of the warning limits, ib)
reasonable values for the warning limits, and (c) types of actions which
could be based on these limits.

26.10. The equations for the process capability used in Section 26.3 were based
on normally distributed data. Describe a test of a data set to decide whether
the data is normally distributed.
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ia) Discuss the interpretation of several simultaneous data points above Questions

(or below) the mean, but within the control limits.
ib) Devise additional rules that could be used in conjunction with the

standard Shewhart chart,
(c) Specify all assumptions required for the rules in ib) to be appropriate

and when these assumptions are likely to be satisfied.

26.12. The Shewhart chart uses the data to identify a change in mean. Propose a
different chart that could identify a change in the variability, as measured
by the standard deviation or variance.

26.13. Often, the variable used in the Shewhart chart is an average of several
samples taken at the same time from the process. Discuss the advantages
and disadvantages of using the average of several samples rather than a
single measurement.

26.14. A mixing tank after a process can, in some cases, reduce the effect of pro
cess variability prior to providing the product to the customer. Discuss the
effects of product mixing on the following processes. Specifically, would
the mixing reduce the variability important to the customer when the mean
of the production is correct but the variance of the material entering the
tank is too large?
ia) The bottoms product of a benzene-toluene distillation tower is mixed

in a tank. The customer is interested in the percent benzene impurity.
ib) The ball bearings from a manufacturing plant are mixed in a bin. The

customer is interested in the diameter of each ball bearing.

26.15. Discuss the differences between the control limits (UCL and LCL) and the
specification limits (USL and LSL).


