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21.1 m INTRODUCTION

Multiloop process control systems were introduced in the previous chapter, where
some important effects of interaction on steady-state and dynamic behavior were
explained, and a quantitative measure of interaction—the relative gain—was pre
sented. This understanding of interaction is now applied in the analysis of multiloop
control performance and design. Three main facets of control performance analy
sis are presented and applied to the design of multiloop systems. The first is loop
pairing: deciding the controlled and manipulated variables for each single-loop
controller in a multiloop system. The second facet is controller tuning to achieve
the desired performance, as well as to maintain stability. The third facet involves
enhancements to the PID control calculations that can improve control perfor
mance while retaining the simplicity of the multiloop control strategy in selected
applications.

As in the single-loop case, the first step is to define control objectives thor
oughly. The main aspects of multivariable control performance are presented in
the following list. Several are the same as for single-loop systems; however, items
2, 5, and 6 are new, and item 4 can assume even greater importance.

1. Dynamic behavior of the controlled variables. The control system should
provide the desired control performance for expected disturbances and set
point changes. The performance can be defined by any appropriate measures
presented in Chapter 9 (e.g., IAE and decay ratio).

2. Relative importance among controlled variables. The multiloop control struc
ture should be compatible with the relative importance of various controlled
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variables, since some controlled variables may be very important and should
be maintained close to their set points, while others may not be as important
and can be allowed to experience larger short-term deviations.

3. Dynamic behavior of the manipulated variables. Feedback control reduces
the variability in the controlled variables by adjusting manipulated variables;
however, the variability in the manipulated variables should not be too large.

4. Robustness to model errors. The control system should be robust so that it
performs well in spite of inevitable modelling errors. As with single-loop
systems, this objective requires that feedback controllers be tuned to ensure
stability and give the best feedback performance possible for the expected
model errors. In addition, we shall see that some multivariable control systems
are highly sensitive to model errors and can be applied only when models are
very accurate.

5. Integrity to controller status changes. Each controller should retain reason
able performance for its basic objectives, even if performance is somewhat
degraded, as changes occur in the automatic/manual status of interacting loops.

6. Proper use of degrees of freedom. The control system should be able to adapt
itself to the degrees of freedom available in the process, which can change
when a manipulated variable cannot be adjusted (e.g., because it reaches a
physical limit). This topic is addressed in Chapter 22.

It would be possible to arrive at the best design by simulating all possible
loop pairings and enhancements. However, simulating the numerous candidate
designs would be a time-consuming task, especially since the controllers in every
candidate would have to be tuned. In addition, such a "brute force" simulation
technique would provide little insight into improving performance through changes
in process equipment, operating conditions, or control structure.

The approaches presented here are selected because they address the most
important issues and generally require less engineering effort than simulating all
possibilities. Because these methods build on the results of the previous chapter,
it will be assumed that all systems considered are controllable. The new analysis
method for each major design decision is addressed in a separate section of the
chapter; then, some advanced topics are introduced. Finally, a flowchart is provided
to clarify the integration of major analysis steps in reducing potential candidate
designs and making decisions for multiloop systems. The hierarchical analysis
method eliminates candidates with a minimum of engineering effort and results in
one or a few final designs. Because of assumptions in some of these methods, the
final design selection may still require simulation, but of only a few candidates. Be
fore the methods are covered, a few motivating examples are presented to highlight
some important issues that distinguish multiloop from single-loop performance.

21.2 m DEMONSTRATION OF KEY MULTILOOP ISSUES
In this section, four important multiloop issues are introduced through process
examples that show the key effects of interaction on the dynamic performance of
multiloop control systems. These issues were selected because they often influence
control design for process units and they are unique to, or assume heightened
significance for, multiloop systems. The analysis methods to address these issues
are provided in subsequent sections of this chapter.



EXAMPLE 21.1. Operating conditions
The first issue is the effect of operating conditions on multiloop control perfor
mance, which is introduced through consideration of the blending process in
Figure 20.2. We begin by considering the same operating conditions previously
considered in Table 20.5, which are repeated in Table 21.1 as the base case.
For these operating conditions, the product is very dilute (5% A). Thus, changing
the flow rate of component A by a small amount affects the product composi
tion significantly while affecting the total product flow only slightly. This qualita
tive analysis was substantiated by the quantitative tuning analysis in Example
20.10, which leads to the recommendation of the pairing for the base case in
Table 21.1.

Next, we investigate whether a different pairing is recommended for an al
ternative operating condition that involves a very concentrated product (95% A).
In this operation, the product concentration is more sensitive to the flow of the
solvent than to the flow of component A, as it was in the base case. The tuning
for proportional-integral controllers is determined by the guidelines for 2 x 2 sys
tems with one fast and one slow loop. For this alternative case the loop pairings
Ax-Fx and F2-F2 provide better control, because the tunings for the controllers in
this configuration are not dependent on the automatic/manual status of the other
controller. From this example, we can conclude:
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The proper control loop pairing depends on the operating conditions of the
process.

Thus, it is not possible to specify a single control design for each unit operation,
like blending or two-product distillation. Even though units may appear similar,
at least with respect to equipment structure, their operating conditions and the
resulting dynamic responses must be considered.

TABLE 21.1
Effect of operating conditions on multiloop performance of the blending system

Operating
condition

Set points
A , F 3

Relative gain
kAl-F2i kAi-pi
kF3-Fli kp3-F2 Pairing: A\-F2, F3-F1 Pairing: Ax-Fx, F3-F2

Base case 0.05 1 0 0 0 . 9 5 0 . 0 5

Alternative case 0.95 100 0.05 0.95

Recommended
The controller tuning
is essentially the same for
single-loop and multiloop
control.
Not recommended
The controller tuning
depends strongly on the
status of the interacting
loop.

Not recommended
The controller tuning
depends strongly on the
status of the interacting
loop.
Recommended
The controller tuning is
essentially the same for
single-loop and multiloop
control.

immî m',Msmimm^msmimmmw^«^^mm^MM!mmm



664

CHAPTER 21
Multiloop Control:
Performance Analysis

EXAMPLE 21.2. Transmission interaction
The previous analysis selected the controller pairing that reduces transmission
interaction. In fact, the best controller pairings for the two examples are consistent
with selecting the multiloop pairings that yield relative gain values closest to 1.0, as
verified by the relative gain values in Table 21.1. Given this result, it is tempting to
assume that the multiloop control with relative gains closest to 1.0 always gives the
best performance. This example demonstrates that this assumption is not always
valid and that a more complete analysis is required.

ia)

0.98

0.95

0.03

1 0 0 1 5 0 2 0 0
Time

150 200
ib)

5 0 1 0 0 1 5 0 2 0 0
Time

FIGURE 21.1

150 200

Energy balance distillation control: (a) schematic diagram; ib) transient response to a change
in light key in feed of -0.04.



This example consists of the two-product distillation tower separating a binary
feed considered in Example 20.2. Both top and bottom product compositions are
of equal importance, and the major disturbance is a change in feed composition.
Two regulatory loop pairings, which differ only in how the distillate and reflux flow
rates are manipulated, are considered. The first, shown in Figure 21.1a, has the
distillate manipulated to control the overhead drum level and the reflux manipu
lated to control the top product composition; this is called energy balance and was
considered in Chapter 20. The second, shown in Figure 21.2b, has the distillate
and reflux pairings interchanged; this is called material balance and is introduced
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FIGURE 21.2

Material balance distillation control: ia) schematic diagram; ib) transient response to a
change in light key in feed of —0.04.
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TABLE 21.2

Tuning and performance data for distillation dynamics

Energy balance Mater ia l balance

kxD-FB 6.09
kxD-FD 0.39
Kcd 10.4 -9.35
I/O 9.0 10.0
Kcb -6 .8 -68.7
Tib 6.1 6.7
Feed
composition IAExd 0.17 0.45
disturbance IAExb 0.35 0.31
iAxf = -0.04)

IAExd 0.35 0.0585
SPxD IAE™ 0.34 0.0456
disturbance
(ASPxd = 0.005)

here for the first time. It is important to recognize that the steady-state responses
of these two systems are identical because the process equipment, controlled
variables, and manipulated variables are the same. Only the transient behavior
is different. The linear transfer functions, including 2 min analyzer dead times, for
the two systems follow.

Energy balance.
- 0.0747c"3v -0.0667c"25 "I

[SI- 12s+ 1
0.1173c"3-35

15s + 1
-0.1253c"25

- 11.75* -h 1 10.2s+ 1 -1
Material balance.

r -0.0747*-* 0.008c-25 "I

[SI- \0s + \
-0.1173c-25

5s+ 1
-0.008c"25

L 9s+ 1 3s+ 1 -1

[S] +
0.70c- 5 s - i

14.4s + 1
1.3c"35

L 12s+ 1 J

X, (21.1)

[S] +
0.70c -55 -,

14.4s -1-1
1.3c"35

L 12s+1 J

X F ( 2 1 . 2 )

Tuning for these control systems can be determined by the methods in Chapter
20. The results are reported in Table 21.2.

The transient responses for well-tuned feedback control in response to a feed
composition upset are given in Figures 21.1b and 21.2b, and the control perfor
mances are summarized in the IAE values in Table 21.2. Based on the total IAE
values (0.52 for energy balance and 0.76 for material balance), the performance
of the energy balance control design is better than the material balance controller
for the feed composition disturbance—in spite of the fact that the interaction, as
measured by the relative gain, is much further from 1.0 for the energy balance
controller pairing. Thus, we conclude:



The best-performing multiloop control system is not always the system with
the least transmission interaction (i.e., with relative gain elements closest
to 1.0).
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This result should not be surprising when one considers the closed-loop trans
fer function for a multiloop system, derived in Chapter 20 and repeated here.

Gd2is)Gl2is)Gc2
CVxis)
Dis)

Gdlis)-
[1 + Gc2is)G22f ^ l fllis)] J

+ Gc2is)G22is)]

CEis) (21.3)

with

CEis) = 1 + Gcxis)Gxxis) + Gc2is)G22is) + Glds)Gxxis)Gc2is)G22is)
kxxis)

The dynamic response depends on all elements in the transfer function, so both
numerator and denominator must be considered, especially in multivariable sys
tems. However, the relative gain appears only in the denominator, whereas the
disturbance transfer function appears in the numerator. This result is a bit disap
pointing, since the design of multiloop systems would have been relatively easy
if the pairing were determined completely by the relative gain. Transmission inter
action is important and must be considered, but a simple pairing method based
entirely on the relative gain is not always correct.

EXAMPLE 21.3. Disturbance type.
A further important question concerns the performance of candidate controls for
different disturbances. Specifically, is it true that one candidate control pairing
performs best for all disturbances? This issue is investigated by extending the
study of the two distillation controller pairings for a different disturbance: a set
point change to the distillate controller. The dynamic responses for a set point
change in the top composition controller of +0.005 mole fraction, with the other
set point and all disturbances constant, are given in Figure 21.3a and b. The
results, summarized in Table 21.2, show that the total IAE values are 0.69 for
energy balance and 0.104 for material balance. In this case, the material balance
system performs better. Note that an attempt to "speed" the sluggish response of
the energy balance system through tighter controller tuning will lead to instability.

From this example we conclude:

The relative performance of control designs and the selection of the best
design can depend on the specific disturbahce(s) considered.

This result seems reasonable when considering the following closed-loop transfer
function for the set point change:

CV,0) Gcxis)Gxxis) + Gcxis)Gc2is)[Gxxis)G22is) - G12(s)G21(s)]
SP,(s) CE(s)

(21.4)
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Transient response of distillation control to +0.005 distillate light key set point
change: (a) energy balance design; ib) material balance design.



The characteristic equation is unchanged from equation (21.3), but the transfer
function numerator is different for different disturbances, and thus the control per
formance could be different. The result again demonstrates the difficulty with hav
ing a single, standard design for a unit operation, because the types of distur
bances a unit most often experiences depend on the entire plant design.

669

Demonstration of Key
Multiloop Issues

EXAMPLE 21.4. Interactive dynamics.
The examples covered to this point involved interactive systems in which the trans
mission interaction is not faster than the "direct" transfer function between the
manipulated and controlled variables. Assuming that the controller is paired ac
cording to CVi(s)-MVi(s), the systems studied to this point have had

Gn(s) faster than G2xis)Gc2js)Gx2is)
1 + Gc2is)G22is)

A particularly difficult control challenge can occur when the transmission inter
action is faster than the direct process response. As an example, two systems
are considered; they have the same steady-state gains, but system B2 has fast
transmission dynamics, whereas system B1 has similar dynamics for all transfer
functions in the process model. In Example 20.9, system B1 has been shown to
have "well-behaved" closed-loop dynamics and to be easily tuned.

System B1.

System B2.

rev, on
|_CV2(s)J

rcv,(s)"|_
LCV2(S)J

1.0c-1.0s 0.75c-l.0.v - i

l +2s
0.75c"1 °5

L l + 2 s

l+2s
!.0c"'°5
l + 2 s J

MVxis)
MV2(s) (21.5)

1.0c-3.05 0.75c-OAs

l +2s
0.75c"015

L l + 2 s

l+2s
1.0c-°l5
1 +2s J

MVxis)
MVds) (21.6)

System B2 has the same steady-state gains but very different dynamics. To first
acquire some understanding of this system, the dynamic response is determined
for a step change in MV, it) with only the controller for variable 2 in automatic; this is
the process reaction curve for the process MV] (f)-CVj(r) with the other controller
in automatic. The dynamic response in Figure 21.4a shows an inverse response,
because the fast transmission effect produces an initial negative response before
the slower diagonal [Gnis)] effect produces a positive steady-state response.

It is important to recognize that the structure of a multiloop system with interac
tion ensures that parallel paths exist; the parallel paths include the direct transfer
function and transmission interaction, as shown in Figures 20.7 and 20.8. These
parallel paths do not always create complex feedback dynamics such as inverse
response or initial overshoot, but the possibility always exists. In system B2 the
interactive path is faster and has an effect opposite to the direct effect, leading to
the initial inverse response.

A process with an initial inverse response is usually difficult to control; thus,
interaction with fast transmission dynamics can result in poor control performance.
As an example, the control response of system B2 to a set point change in CV,
with PI tunings that yield minimum (IAE| + IAE2) is given in Figure 21 Ab. (Again,
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System B2: (a) Process reaction curve of MVi-CVi with other loop closed;
ib) multiloop transient response to set point change in CVj.



TABLE 21.3

Effect of dynamics on multiloop performance

Case
B1: Uniform
interactive
dynamics
(Figure 20.11)
B2: Complex
interactive
dynamics
(Figure 21.45)

Kcl Tn Kc2 Tn I A E , I A E 2 I A E , + I A E 2
1 . 2 3 1 . 7 6 0 . 8 9 1 . 0 6

0.71 3 . 0 0 4 . 0 0 2 . 9 7

3.46

9.80

2.46

1.27

5.92

11.07
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this simple measure of control performance is selected for comparison purposes
only.) The feedback controller cannot eliminate the initial inverse response, which
results in a relatively long time during which CV](0 is far from its set point.

The tuning and performance for systems B1 and B2 are compared in Table
21.3. This example clearly demonstrates the importance of interactive dynamics;
recall that both systems B1 and B2 have the same steady-state interaction, but
system B2 has poorer performance.

This example demonstrates:

Multivariable systems with strong interaction and fast transmission dynam
ics can result in complex dynamic responses, involving inverse response
or large overshoot, which can degrade control performance.

The examples considered in this section have demonstrated that the design of a
multiloop control system is a challenging task, involving more complex issues than
single-loop systems, and that the process dynamic responses, operating conditions,
disturbances, and extent of interaction must all be considered. The next three
sections present methods for considering these issues when making the three main
multiloop decisions: loop pairing, tuning, and enhancements.

21.3 o MULTILOOP CONTROL PERFORMANCE
THROUGH LOOP PAIRING

Loop pairing—the selection of controlled and manipulated variables to be linked
through single-loop controllers—is an extremely important design decision. For
the distillation examples in Figures 21.la, the two possible pairings are (1) XD-
FR and XB-Fy and (2) XD-FV and XB-FR. However, for a system with more
manipulated variables, the number of potential designs becomes very large; in fact,
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the number of initial candidates for a process with n manipulated and controlled
variables is n factorial (n!). For example, there are 125 candidates for a five-
controller, five-manipulated-variable distillation system in Figure 21.1a when the
product compositions, pressure, and levels are considered! Clearly, the number
of candidates must be reduced significantly, or the analysis task will require an
enormous effort to evaluate all candidates. In this section, four separate analyses are
described for eliminating clearly unacceptable pairing candidates and evaluating
the remainder for likely performance. These analyses would be applied only to
process designs that have been verified to be controllable and to have an adequate
operating window. Also, the four analyses are employed sequentially, with only
those candidates passing the prior steps evaluated at the next step.

Integrity
An important factor to be considered in multiloop control design is the performance
of the system when a fault or limitation occurs. Here, a fault is assumed to involve
a sensor or final element so that a control loop ceases to function; we will be
considering the situation after a fault has been recognized and the loop with the
fault has been taken out of service. The resulting situation is the same when one
(or more) controller is placed in the manual status, so that it no longer adjusts the
manipulated variable. In such circumstances, interaction influences the stability
and performance of the remaining closed-loop control system. We would like the
system to have integrity.

A system has integrity if, after one or more loops are placed in manual, the remain
ing closed-loop system can be stable without changing the signs of any feedback
controller gains remaining in automatic.

Some very useful results regarding integrity can be determined from the relative
gain.

NEGATIVE RELATIVE GAIN. If a control loop (with integral mode) is paired
using manipulated and controlled variables that have a negative relative gain ele
ment kij, one of the following situations must exist (McAvoy, 1983; Grosdidier et
al. 1985).

1. The multiloop system is unstable with all controllers in automatic.
2. The single-loop system ij is unstable when all other controllers are in manual.
3. The multiloop system is unstable when the 17th controller is in manual and

all other controllers are in automatic.

Since all three situations are undesirable, the general conclusion is that single-
loop designs should avoid pairings with negative relative gains, whenever possible.
Only when essential, fast feedback dynamics can be achieved only by pairing on a
negative relative gain should this design be considered. Industrial experience has
shown that good designs with loop pairings on a negative relative gain occur very



infrequently. An industrially important example of pairing on a negative relative
gain is described by Arbel et al. (1996).

ZERO RELATIVE GAIN. When the relative gain, ku, is zero for a pairing,
the steady-state gain of the pairing CV/(f) — MVjit) is zero when the other loops
are open, that is, the process gain Ky = 0. Since no causal relationship exists,
the single-loop controller cannot function. However, the multiloop system can
function because of the causal relationship through the interacting process and
the interacting controller. The causal interaction relationship is demonstrated with
equation (20.13), which gives the transfer function between CV] is) and MVj is)
for a 2 x 2 system with loop 2 in automatic.

0

CVxis)/MVxis)=pfxis)-Gxds)G2xis)Gc2is)/[\ + Gc2is)G22is)] (20.13)
Clearly, a nonzero causal relationship exists between MVj is) and CV] when pro
cess interaction occurs [Gxds)G2xis) ̂  0] and the interacting controller is in
automatic [Gc2is) ̂  0] to create a feedback loop via the interaction path. There
fore, successful operation of a control loop paired on a zero relative gain depends
on the status of the interacting loop. Pairing on a zero relative gain should be im
plemented only when essential, fast feedback dynamics are achieved. Industrial
experience indicates that this situation is not common, but occurs occasionally.

In both of these cases, proper functioning of a control loop requires that the
adjustments from other controllers be implemented at the final elements, which
would not be satisfied if an interactive controller (1) were in manual or (2) had
its output saturated at the upper or lower bound. It is not uncommon for these
situations to occur, at least temporarily, and thus, multiloop control designs with
relative gains less than or equal to zero could often fail to provide stable feed
back regulation. To prevent these failures, a real-time computer program could be
prepared to continuously monitor the control system and change controller gains
and automatic/manual statuses depending on the condition of all controllers in the
multiloop system.

To summarize this discussion on integrity:
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Pairing a control loop on negative or zero relative gain should be avoided, if pos
sible; such a pairing is implemented only when essential, significant dynamic
advantages can be gained by this design and by no other reasonable process or
control modifications.
When a control design has a loop paired on a negative or zero relative gain, a
program should be executed in real time to monitor the interacting loops and
either warn the operator or take automated actions to prevent unstable systems
when the status of an interacting loop changes from automatic to manual.

To discuss a process with conventional and zero relative gain pairing, we
begin by considering the fired heater process in Figure 21.5. The process fluid
flows through a pipe (termed a coil) and is heated by radiant and convective heat
transfer from the combustion of fuel. The variables to be controlled are the process
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Fuel oil
FIGURE 21.5

Furnace multiloop control pairing on variables with
X>0.

fluid flow rate and the process fluid outlet temperature, and the two manipulated
valves are in the process fluid ivx) and fuel iv2) lines. When no feedback controllers
are present, the process fluid flow rate is influenced directly only by v\, and the
outlet temperature is influenced by both vx and v2. Thus, the 2 x 2 gain matrix has
a zero, and as shown in Chapter 20, the relative gain array has ones in the diagonal
elements and zeros in the off-diagonal elements. There is only one pairing with
nonzero relative gain values, and this pairing is shown in Figure 21.5, which is the
common loop pairing used in most industrial designs.

The guideline for eliminating pairings on nonpositive relative gains conforms
to theory and common industrial practice; however, there are a few cases where the
rule is violated and pairings with zero relative gains are used. These unconventional
designs are employed, in spite of their recognized drawbacks, to achieve specific
advantages—typically, very fast feedback dynamics for a particularly important
controlled variable. An example of an exception is given in Figure 21.6. In this
case, the tight control of the coil outlet temperature is very important, and the
dynamic response between the process flow valve vx and the temperature can be
very fast when the fluid residence time in the coils is short. Since the open-loop
gain between valve v2 and the process fluid flow is zero, the proper functioning of
the flow controller in this case requires the operation of the temperature controller.
This design is used industrially only when the temperature is of especially great
importance, feed flow control need not be controlled tightly, and other steps to
improve control performance are not possible or are extremely costly.

Dynamics
If one or a few controlled variables are much more important, the control loop pair
ing should be selected to give good performance for the most important variables.
As demonstrated in discussions on single-loop control, control performance is



FIGURE 21.6

Furnace multiloop control pairing on variables with X = 0.

much better when the feedback process dynamics involve a fast process with small
fraction dead time. Thus, the second loop-pairing guideline is stated as follows:
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Very important controlled variables should be paired with manipulated variables
that provide fast feedback dynamics with small dead times and time constants and
negligible inverse response.

As an example of this guideline, consider the simplified system in Figure
21.7 in which two gases are mixed, as might occur where the heating value of
the mixed gaseous fuel stream is to be controlled. The sources of the feeds are a
gas stream L (lower heating value) and a vaporizer for the stream H (higher heat
ing value). The controlled variables are the pressure and the composition in the
pipe after mixing, and both manipulated variables affect both controlled variables.
Generally, the pressure is of greatest importance, because variations could lead to
unsafe conditions; short-term composition variations, while not desirable, can be
more easily tolerated. Therefore, the pressure is controlled by manipulating the
fast-responding gas feed, while the composition is controlled by manipulating the
more slowly responding vaporization process. Since the pressure is most important,
this pairing would be used as long as the gas feed valve has the flexibility range to
control pressure—in other words, as long as it does not go fully opened or closed in
response to disturbances—regardless of the interaction effects on the composition.
EXAMPLE 21.5.
Evaluate the two possible loop pairings for the blending example process with
base-case conditions in Table 21.1 according to the relative gain and dynamic
responses.

<§>
Solvent C%r

Pure A

0 D ^

(§)_
( ^



676

CHAPTER 21
Multiloop Control:
Performance Analysis

FuelL

FIGURE 21.7
Heating medium

Fuel gas control system with key pressure variable
paired with fast manipulated variable.

The relative gain array for the blending process with dilute product (5% A)
can be evaluated from the steady-state gains to be

F2
Relative gain array: Ax

Ft
0.05
0.95

0.95
0.05

Since none of the elements is less than or equal to 0.0, both possible pairings
are allowed based on the first guideline. Also, the data reported in Example 20.10
show the same dynamic responses for both pairings, since the dominant dynamics
are due to the sensors. Therefore, neither pairing has an advantage regarding
dynamics. Finally, since the two guidelines do not exclude either pairing, the results
in Table 21.1 give strong evidence for preferring the Ax-F2 and F3-F\ pairing, since
the tuning of each controller does not depend on the automatic/manual status of
the other.

~ ^

-&+-
5 \ « — t £ l * t & l — r —
r*\

« S ^

^

§ ^ ^

EXAMPLE 21.6.
Evaluate the two possible composition control loop pairings for the distillation ex
ample in Figure 20.3 according to the relative gain and dynamic responses.

The relative gain array can be evaluated from the steady-state gains in equa
tion (20.24), giving

FR
Relative gain array: XD

XB
6.09

•5.09
-5.09

6.09

Since only the pairing XD-FR and XB-FV has positive relative gains, only this
pairing is allowed by the first guideline; this is the design in Figure 21.1a. The loop
dynamics for the allowed pairing are not slower, and are even slightly faster, than
the disallowed pairing, which indicates that there is no significant disadvantage
to this design based on feedback dynamics.
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The third analysis addresses the remaining candidate pairings, involving control
lable systems with positive relative gains, similar feedback dynamics, and con
trolled variables of equal importance, by investigating the control performance for
specific disturbances. If only a few candidates remained at this point, one could
simulate the systems for the important disturbance(s) to select the best design, as
was done for the distillation tower in Examples 21.2 and 21.3. Here a shortcut
method is outlined that provides a quick estimate of control performance and is
useful in reducing the pairing candidates that can yield good control performance.
Equally important, it provides insight into the effects of disturbances, specifically
how interaction can be favorable or unfavorable in multiloop control (Stanley et al.,
1985). The approach is introduced for 2 x 2 systems; however, it can be extended
to higher-order systems (Skogestad and Morari, 1987a). In spite of its advantages,
the method does not provide a definitive recommendation, because of the assump
tions required; thus, some care is required in its application, and the results may
have to be verified through dynamic simulation.

The method takes advantage of a simple estimate of control performance that
can be determined directly from the closed-loop transfer function. The control
performance measure used here is integral error, which can be obtained directly
by using the following relationship (see Appendix D):

/ • O O / » O C

/ Eit) dt = lim / Eit)e'J o s ~ + Q J o
dt = Eis)\5 = 0 (21.7)

This relationship demonstrates that the integral of a variable, specifically the error,
can be obtained from the transfer function of a stable system without solving for the
complete transient response (Gibilaro and Lee, 1969). Naturally, much detailed in
formation about the transient response is lost, but a useful single measure of control
performance is easily obtained. A large integral error indicates poor performance
and a pairing candidate that should be eliminated. A small integral error can result
from good performance, and the pairing should be retained for further evaluation.
However, large positive and negative errors occurring during the transient could
cancel in this calculation (this is not the IAE!), so a small value of integral error does
not definitely prove good control performance. Thus, the final selection requires
further evaluation, such as a simulation, to determine the transient behavior.

The closed-loop disturbance response transfer function for a 2 x 2 system
is given in equation (21.3). The relationship in equation (21.7) can be applied to
equation (21.3) with Dis) = \/s, resulting, after some rearrangement, in

.Jo
Exit)dt

J ML [fJo
E\it)dt (/l.tuneXRDG,) (21.8)

JSL

where Integral error under multiloop control = j°°Exit)dt\ ML

Integral error under single-loop control = j Ex it) dt \ =

Detuning factor for multiloop control = /i,lune =

Is l KidKci)sL
(21.9)

JKc\/Th)sl
iKcx/Tn)wL

(21.10)
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1 - J2 l2 )

KdlK22/
(21.11)

The multiloop control performance calculation in equation (21.8) is arranged to be
the product of three factors so that separate facets of multiloop control are repre
sented in each factor: (1) a factor for the single-loop performance, (2) a factor for
tuning adjustment, (3) a factor accounting for interaction and disturbance. The first
factor represents the single-loop performance that would be achieved if the other
control loop were not in operation (e.g., in manual). This term again demonstrates
that aspects of single-loop control performance, which are summarized in Chapter
13, also influence the controlled variables in a multiloop system. For example, fast
feedback dynamics and small disturbance magnitudes are beneficial in multiloop
systems.

The final two factors represent the change in control performance due to the
multiloop structure. The detuning factor /,une represents the effects of detuning the
PI controllers for multiloop control. The values of the multiloop tuning constants
can be estimated using methods in Chapter 20 or alternative methods cited in
the references. By applying the tuning method recommended in Chapter 20 for
2x2 systems with equal dynamics for the two loops, the detuning factor can be
determined from the relative gain, as shown in Figure 21.8. Since the relative gain
in most properly designed control systems is greater than about 0.7, the correlation
shows that the detuning factor is usually bounded between 1.0 and 2.0 for 2 x 2
systems (Marino-Galarraga et al., 1987a).

Thus, the effect of multivariable control is usually dominated by the third
term, which is called the relative disturbance gain, RDG. The relative disturbance
gain is the product of the relative gain and a disturbance factor. Recall that the
relative gain is an inherent property of the feedback process, independent of the
type of disturbance. In contrast, the RDG depends on the type of disturbance; for

1.5 2 2.5 3 3.5 4 4.5 5
Steady-state relative gain, An

FIGURE 21.8

Correlation between detuning factor /tune and
relative gain for 2 x 2 system with equal
input-output dynamics.



example, it has different values for feed composition and set point changes to a
distillation tower.

The influence of the RDG is first analyzed from a mathematical, then a process
point of view. The RDG is the product of two values, and its magnitude is small
when control performance is good. The first factor is the relative gain; if the relative
gain has a large value, its contribution will be to degrade control performance,
because the integral error will tend to increase. The second factor represents the
effect of the disturbance type, and because it is the difference of two values, it can
have a magnitude ranging from zero to very large. A small magnitude of this factor
indicates that the multiloop performance could be much better than the single-loop
performance. This situation would occur when the term (1 — Kd2Kx2/Kjx K22) has
a value near zero, which is interpreted as favorable interaction. The other result,
with a large disturbance contribution and much poorer multiloop performance, is
also possible and is interpreted as unfavorable interaction.
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The combined effects of inherent process interaction and disturbance type determine
the dominant difference between single-loop and multiloop control performance.
These effects are reflected in the magnitude of the relative disturbance gain (RDG).

This clearly demonstrates that multiloop control performance can be better or
worse than single-loop performance for some disturbances.

A key element in determining the effect of interaction in multiloop systems
is the manner in which a disturbance affects both controlled variables, sometimes
referred to as the "direction" of the disturbance. Thus, it is worthwhile considering
the basis for favorable interaction. Favorable interaction occurs when controller 2,
in correcting its own deviation from set point, makes an adjustment that improves
the performance of controller 1, CVi it). The net effect must consider the effects
of the disturbances on both controlled variables iKjx and Kj2), the manipulation
taken to correct the CV2(0 deviation (characterized by 1/^22) and the interaction
term (£12). All of these parameters are in the interaction factor of the relative
disturbance gain.

EXAMPLE 21.7.
For the distillation towers in Figures 21.1 and 21.2, evaluate the relative distur
bance gain and provide an interpretation of the effect of interaction on the control
performance of the distillate composition, XD, for a disturbance in the feed com
position.

The effect of interaction on control performance is predicted by equation
(21.8), and the calculations are summarized in Table 21.4 for both distillation con
trol designs. This analysis predicts that the energy balance performs better for
feed composition disturbances, because its sum of values of /,une x RDG,- for the
two compositions is smaller than for the material balance system. This conclusion
is confirmed by the simulation results in Figures 21.1b and 21.2b and in Table 21.2.

The physical interpretation of the favorable interaction is considered here
for the control design in Figure 21.1a. The initial effect of increased light key in
the feed (before the analyzer controllers respond) results in the top and bottom
products having too much light key. In response, the bottom controller increases
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TABLE 21.4

Summary calculations of predicted control performance for the distillation
tower in Examples 21.7 and 21.8

Energy balance design
in Figure 21.1a

Data and
calculated variable xD XB

Kf r 0.0747 0.1173
Kfd
Kfv -0.0667 -0.1253
k 6.09
/tune
Feed Kd

2.0
0.70 1.3

composition
disturbance

RDG
/tune • RDG

0.071
0.14

0.94
1.88

Set point
change iXD)

Kd
RDG
j'^e RDG

1.0
6.09

12.2

0.0
*
*

Material balance design
in Figure 21.2a

0.0747 -0.1173
0.008 -0.008
0.39
5.0
0.70 1.3
1.11 0.06
5.55 0.30
1.0 0.0
0.39 *
1.53 *

* Predicted / Edt is finite, although RDG is infinite, due to cancellation of Kd2 (which is zero) in numerator
and denominator.

the heating flow rate (i.e., reboiler duty). This adjustment by the bottom controller
has the effect of decreasing the light key in the top product, exactly what the top
controller is doing itself! The top controller must also take action by increasing the
reflux; however, the (reinforcing) interaction from the bottoms controller improves
the overall control performance. Therefore, the energy balance control pairing
has favorable interaction and good multiloop performance for the top controller
in response to a feed composition disturbance. The reader should repeat this
thought experiment for the material balance system to confirm that the interaction
is unfavorable for XD.

EXAMPLE 21.8.
For the distillation towers in Figures 21.1 and 21.2, evaluate the relative disturbance
gain for a change in the distillate composition controller set point and select the
better design for XD.

The analysis method, summarized in Table 21.4, correctly predicts that the
material balance performs better for set point changes in the distillate controller,
as was found by simulations in Figure 21.3b. Note that equation (21.3) can be
used to represent a set point change by setting Gdlis) = 1.0 and Gd2is) = 0.0,
and in this case the RDGi is equal to kn.

In summary, equation (21.8) provides the basis for estimating the major effect
of multiloop control on the performance of each controlled variable. ITie infor-



mation required to perform this calculation involves process gains in the feedback
path Ky and the open-loop disturbance gains Kji, which can be easily determined
from a steady-state analysis. One should consider the likely errors in the values of
the gains, as well as in the simplifications in linearizing the process model, when
interpreting the results. Small differences (10-20%) in predicted integral error
should be considered within the accuracy of the information, and the candidate
loop pairings should be considered indistinguishable.

This subsection introduced the consideration of disturbance type, which should
be considered in all analyses of multiloop systems. However, it is necessary to re
peat a caution concerning the use of the integral error, which can be small because
of cancellations of large positive and negative errors. Thus, while large values
of |RDG|| AD\K<t\ definitely indicate poor control performance, small values do
not necessarily indicate good performance. The best recourse to determine the
effects of complex dynamics at this time is to perform a dynamic simulation. Note
that the procedures described here are useful in substantially reducing the number
of candidates for simulation, as well as providing insight into the importance of
disturbance type (or "direction") on control performance.
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Control Range
The method for determining controllability in Chapter 20 is valid for the linearized
model at the point of linearization. For most processes that are not highly non
linear, the results can be extended in a region about the point. However, there is
no guarantee that the results can be extrapolated, especially when a manipulated
variable encounters a constraint while attempting to make the change required
by the controller. The method for identifying difficulties with range in achievable
steady-state behavior is to determine the operating window of the process. Even if
all steady states are feasible, manipulated variables may reach limits during tran
sients; dynamic simulation would be required to determine the importance of a
temporary saturation of a manipulated variable.

This section demonstrated a stepwise method for evaluating candidate multi
loop control designs:

1. Use the relative gain to eliminate some pairings which lack integrity.
2. Use dynamic models to select pairings with fast dynamics for important vari

ables.
3. Use approximate control performance analysis—the relative disturbance gain

(RDG)—for specific disturbances to evaluate systems with controlled vari
ables of equal importance.

Note that step 1 requires only steady-state information, which means that it is
easy to perform with limited modelling information. Also, steps 2 and 3 require
approximate dynamic information to identify where major differences in feedback
dynamics are present. This approximate dynamic modelling information is also
generally easy to obtain. If the effects of interactive dynamics are not easily pre
dicted, so that the methods here cannot provide conclusive recommendations, the
final design could be simulated to determine its performance.
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21.4 ® MULTILOOP CONTROL PERFORMANCE
THROUGH TUNING
The tuning of PID feedback controllers should be matched with the control ob
jectives. Prior to tuning, the first steps presented in the previous section should be
applied, to eliminate inappropriate pairings by the use of the relative gain and to
select pairings with fast feedback dynamics for the important controlled variables.
In all cases, controllers for the most important controlled variables should be tuned
tightly. The tuning of the controllers of lesser importance depends on the type of
interaction present: favorable or unfavorable.

For systems with unfavorable interaction, as predicted by the relative distur
bance gain, the effect of interaction degrades the performance of other loops; this
degradation can be reduced through judicious controller detuning, consistent with
the control objectives. Thus, the controllers for the important variable(s) would
be tuned tightly, as close as possible to single-loop tuning. To ensure stability and
prevent unfavorable interaction, the controllers for the less important variables
would usually be detuned.

If the interaction is favorable, as indicated by a small relative disturbance gain,
interaction improves the performance of other loops and should be maintained by
proper tuning. In this case, the interacting loop, even if not of great importance
itself, should be tuned as tightly as possible to enhance the favorable interaction.

There are no exact guidelines for how the less important controllers should
be tuned. When interaction degrades control performance, a starting approach
is to tune the important loops close to their single-loop values and detune the
less important loops by decreasing their controller gains. Normally, all feedback
controllers would retain an integral mode to return the controlled variables to their
set points (albeit very slowly for some variables) after disturbances. When both
are to be tightly tuned, the method in Chapter 20 would give initial values. An
example of how differences in control performance in the same process can be
induced through different tuning is given in the results in Table 20.2.
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EXAMPLE 21.9.
The effects of tuning the composition controllers on the control performance of
the energy balance distillation control design in Figure 21.1a are investigated.
For this example (only), the distillate product composition is assumed to be much
more important than the bottoms composition, so the bottoms composition will
be allowed to experience larger short-term variation about its set point. Since no
strict guidelines exist for this tuning, the extent of detuning used in this example
represents exploratory results.

The effects of tuning, as determined by simulating the entire response, are
given in Table 21.5. For a set point change in XD, the interaction is unfavorable,
as demonstrated by the large magnitude of RDG • f̂  (12.2) in Table 21.4. There
fore, tight tuning of the distillate composition controller, along with detuning the
bottoms loop, reduces interaction and improves the performance of the distillate
composition controller (reducing the IAE from 0.71 to 0.35). As expected, the vari
ation in the bottoms composition (IAE) increased as the bottoms controller was
detuned.

For the feed composition disturbance, the interaction is favorable, as demon
strated by the small magnitude of RDG • /tune (0.14) in Table 21.4. Therefore, the



TABLE 21.5
The effects of tuning on performance for Example 21.9

Tuning Performance

Input change KCXD Tixd KCXB TlXB IAE*fl IAE*B
Set point,
iASPXD=0.0\)

10.4
20.75

9.0
9.0

-6.8
-3.4

6.1
6.1

0.71
0.35

0.68
1.37

Feed
composition,
iAXB = -0.04)

10.4

10.4

9.0

9.0

-6.8

-2.0

6.1

6.1

0.17

0.36

0.35

1.18
W#WPPI
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control performance in the case with both controllers tightly tuned has better dis
tillate composition performance (IAE of 0.17) than the case with the bottoms con
troller detuned (IAE of 0.36), since detuning reduces the favorable interaction.
fi S K S S * ^ ^

The discussion in this section and the results of Example 21.9 reinforce the
importance of considering the effects of the disturbances in control design and
tuning.

Multiloop tuning should be chosen to retain favorable interaction and to reduce
unfavorable interaction.

21.5 n MULTILOOP CONTROL PERFORMANCE
THROUGH ENHANCEMENTS: DECOUPLING
When the previous analyses are complete, it is possible to arrive at a design with two
(or more) equally important controlled variables, which may not have the desired
performance even with the best pairing and tuning. Often, the limiting factor is
unfavorable interaction, which is indicated by a large magnitude of the relative
disturbance gain (| RDG |). When poor control performance stems from unfavorable
interaction, a potential solution involves reducing interaction through an approach
called decoupling, which has the theoretical ability to improve performance in
some loops without degrading performance in others.

Decoupling reduces interaction by transforming the closed-loop transfer func
tion matrix into (an approximate) diagonal form, in which interaction is reduced or
eliminated. There are at least three different decoupling approaches: (1) altering the
manipulated variables, (2) altering the controlled variables, and (3) retaining the
original variables but altering the feedback control calculation. Each is presented
briefly in this section.
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Manipulated Variables
The first decoupling approach involves changing the control structure to affect dif
ferent manipulated secondary variables in a cascade structure, with the same final
elements. This approach will be introduced by reconsidering the blending in Exam
ple 20.1, in which both manipulated variables influence both controlled variables.
The goal is to control the same variables (Aj and F3) with altered manipulated
variables so that the altered system's gain matrix is diagonal or nearly diagonal.
This goal is usually achieved through process insight. The restructured dynamic
model can be developed from equations (20.1) and (20.2) without linearizing.

■ca
dA

xF-

dt

dFdt)
dt

i (o r Fdt-eA)
Fxit-9A) + F2it -BA)\

Axit) = MVxit-9A)-Axit)
(21.12)

= Fxit -9F) + Fdt - 9F) - F3(f) = MVdt - 6F) - F3(0 (21.13)

From this model it becomes clear that the two controlled variables would be inde
pendent if the manipulated variables were defined as follows:

Manipulated variable number 1 = MVi = F2/iFx + F2)
Manipulated variable number 2 = MV2 = Fx + F2

With this modification, the system in equations (21.12) and (21.13) has been altered
to two independent input-output relationships, and as a side benefit the altered
system is linear. Thus, standard single-loop control methods can be used to tune
the controllers in this decoupled system.

The control strategy can be implemented using real-time calculations and
cascade principles, as shown in Figure 21.9, because Fx and F2 are measured and
respond essentially instantaneously to changes in the valve positions. For example,
when the mixed flow (F3) set point is increased, the initial response of controller

Fl+F2

FIGURE 21.9

Manipulated-variable decoupled control of blending.



F3 is to increase the total flow (Fi + F2) set point; this is achieved by adjusting
vx. This changes the flow ratio and is quickly followed by an adjustment by the
flow ratio controller to increase v2 to maintain the proper ratio F2/iFx+ F2); this
adjustment is made without feedback from the analyzer composition controller.
These adjustments continue until the desired values of the total flow and ratio
are achieved. By similar analysis, it can be shown that the analyzer controller
output affects only the product composition, not the total flow. Thus, the interac
tions have been eliminated. As an added advantage, the decoupled control system
is also easily understood by plant operating personnel. Naturally, the feedback
controllers remain to account for small inaccuracies in the flow measurements,
manipulated-variable calculations, and disturbances. Many similar strategies are
used industrially to minimize unfavorable interactions and are the basis for the
common water faucet design in which the total water flow and the ratio of hot to
cold can be adjusted independently.
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Controlled Variables
Another decoupling approach alters the controlled variables by replacing measured
variables with calculated variables based on process output measurements. Again,
the proper calculation is designed with knowledge of the process dynamics. As a
simple example, the two-tank level control system in Figure 21.10 is considered;
the levels are to be controlled by manipulating the set points of the flow controllers.
If the goal were to design two decoupled controllers for maintaining the desired
levels, calculated variables which yield independent equations would be sought in
the basic linearized model of the process.

dL\
~aT
dV2
I T

= Fiin - F'x ~ KxdL\ - L2)

— F2\n — F2 + KxdL\ - L'7)

(21.14)

(21.15)

A decoupled system can be derived by noting that the sum of the levels depends
on the sum of the manipulated variables, whereas the difference between the levels
depends on the difference between the manipulated variables. This is easily shown

'lin

£><f-

Fr,2in

/
Partially open

FIGURE 21.10

Level process.
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by adding and subtracting equations (21.14) and (21.15) to give

Ad(L\ + V2) = (f,^ + pL) _ (f, + p,} (2U6)

Ad(L''~L'2) = (F'Vm - FiJ - 2Kn(L\ - L'2) - (F[ - F2') (21.17)

Thus, a control design in which (L i + L2) and (L i — L2) are controlled by adjusting
(Fj + F2) and (Fj — F2), respectively, is decoupled. Note that (Lj + L2) is non-
self-regulatory, whereas (Li — L2) is a first-order system. A process application
of this principle to distillation reboiler level and composition control is given by
Shinskey (1988).

This approach is not as widely applied as the approach based on manipu
lated variables, because it uses measured process output values in calculating the
controlled variables. For this approach to function properly, all measured output
variables should respond to adjustments in all manipulated variables with nearly
the same dynamics so that the calculations are "synchronized." This criterion is
easily satisfied for the example in Figure 21.10, because levels respond rapidly,
but it is not commonly satisfied for complex units. Control designs for distillation
composition using these concepts have been reported (Weber and Gaitonde, 1985;
Waller and Finnerman, 1987).

Explicit Decoupling Calculations
The third approach to decoupling is to retain the original manipulated and con
trolled variables and alter the control calculation, while retaining the multiloop
structure. There are two common implementations of this approach. The "ideal"
decoupling compensates for interactions while leaving the input-output dynamic
relationships for the feedback controllers unchanged from their single-loop be
havior, Gais). While the concept is attractive, since controller tuning would not
be affected by decoupling, experience has shown that the resulting system is very
sensitive to modelling errors and generally does not perform well (Arkun et al.,
1984; McAvoy 1979); thus, it is not considered further.

The "simplified" decoupling method presented here achieves a diagonal sys
tem by calculations that result in the interaction relationships between the controller
outputs and controlled variables all being zero. Since it is not possible to eliminate
the process interaction Gjjis), the decouplers are designed to provide compen
sating adjustments that cancel the process effects of manipulations in MVjis) on
CVjis) for i ̂  j and thus yield independent, single-loop systems. The system is
shown in Figure 21.11, with the decoupling transfer functions £>,-; is) given by the
following relationships:

Decoupler: Dijis) = -
Gijjs)
Gids) (21.18)

The reader may recognize the decoupler as similar to the feedforward controller,
which compensates for measured disturbances; here the measured disturbance is
the manipulated variable adjusted by an interacting feedback controller. The reader
is referred to Chapter 15 on feedforward control for the derivation of this equation
and a discussion of the possibility of the decoupler being unrealizable.



SP,(5)-^6

SP2is)

^Q-^+H-^ cv,(5)I I

Dis)

CV2is)

FIGURE 21.11

Block diagram of explicit decoupling.

When the process behavior can be modelled by first-order-with-dead-time
transfer functions, the decoupler in equation (21.18) becomes
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Duis) = -
Kjj 1 + TjjS _(oi:_
Ku 1 + XnS

(0ij-Ou)s (21.19)

Again, this is the same form as feedforward controllers. The decoupling calcu
lations in equation (21.19) can be implemented in digital form through the same
procedures used with feedforward controllers in Chapter 15.

The explicit decoupler completely eliminates interaction only when the model
is perfect. The resulting transfer function can be derived through block diagram
manipulation assuming perfect decoupling, equation (21.18). The perfectly de
coupled system is shown in Figure 21.12. Clearly, the "effective process" being
controlled has changed because of the decoupling, and the controller tuning must
be changed from single-loop values. Since the change in the "feedback process"
transfer function is the inverse of the relative gain, the controller gain for the de
coupled system should be taken as (approximately) the product of the single-loop
controller gain, calculated using Guis), and the relative gain. This will maintain
the Gods), product of the controller and the "process" [A.uGCi is)][G\\is)/ku]t
nearly constant, as a first approximation.

Errors in the models used in the decouplers affect the accuracy of the de
coupling and, more seriously, affect the stability of the multiloop system. The
sensitivity can be determined from an analytical expression of the performance as
a function of the decoupler errors. The procedure to calculate the integral error in
equation (21.7) can be applied to the closed-loop transfer function for the decou
pled system with modelling errors. To simplify the analysis, only the decoupler
gains have errors, with e,- being a multiplicative error in the decoupler controller
gain, Koij. The resulting expression for the performance is

Jo
Exit)dt = kxxk<xe2

r ^ iT / i i r i + j€x — l)Kd2Kx2
Kd\K22

(21.20)
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Guis)/kuis)

Gc2is)
MV2(5)

G22is) I k22is)
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FIGURE 21.12

Consolidated block diagram explicit decoupling with perfect models. (Reprinted
by permission. Copyright © 1983, Instrument Society of America. From
Interaction Analysis.)

where k =
KxxK22

kxx =

Dtjis) = -€(

\ - K

Gjjjs)
Guis)

kfi =
1 — €jK

^•<Me2 =
1

1 ~€x€2K

€i = (1 for perfect model)

Clearly, the error relative gain, k€i€2, plays a key role. As the decoupler errors in
crease, this factor and the integral error can become very large and the performance
very poor. For processes with relative gains significantly greater than 1, even small
decoupling errors can lead to very poor performance. For example, a small (5%)
model error of e/ = 1.05 in a decoupler applied to the distillation example with
energy balance control (A, = 6.09, k — 0.836) would increase the integral error by
about 100% over perfect decoupling! Thus, caution should be used when applying
decoupling, since it requires model accuracies nearly impossible to achieve for
real process systems with large relative gains. Similar results have been presented
by McAvoy (1979), Shinskey (1988), and Skogestad and Morari (19876) using
different analysis methods.

Several simplifications are possible in this decoupling approach. First, the
dynamic decouplers in equation (21.18) can be approximated by the gains when
this is sufficient for good control. Typically, the steady-state approximation is
acceptable when Dyis) has a small dead time and nearly equal lead (numerator)
and lag (denominator) dynamics. Note that this simplification does not reduce the
sensitivity to model gain errors shown in equation (21.20).

Also, decoupling can be simplified by using only one-way decoupling, with
one Dijis) = 0. This approach would be applied to improve the performance of
the more important controlled variable. Sensitivity analysis shows that one-way
decoupling is much less sensitive to model gain errors than full decoupling, which
presumably leads to its more frequent successful application in practice (McAvoy,
1979).



EXAMPLE 21.10.
Determine the performance with decoupling for the energy balance distillation
control system in Figure 21.1. The disturbance is a set point change of +0.01 to
the top composition controller.

The first question the engineer should ask is "Will error-free decoupling im
prove the control performance?" Recall that the magnitude of RDG • /tune indicates
the effects of interaction on multiloop controllers. Decoupling removes the effects
of interaction, and the integral error will be the same as for a single-loop controller
(i.e., with the other controllers in manual). Therefore, unfavorable interaction oc
curs when RDG • /,une > 1.0, and decoupling can be used in such cases to remove
the unfavorable interaction. The information required is given in Table 21.4, which
gives the values of 12.2 for XD and 0.0 for XB. Since the value for XD is so large,
decoupling should be considered.

The values for the decoupler can be determined from the linear model of the
energy balance system and are as follows:

10.2$ + 1 ,-,->->,
Dris) = 0.893 ig \ g-(2-3.3).v15^ + 1

0.893

D2Xis) = 0.930

10.2$ + 1
155 + 1

10.25 + 1

(not realizable)

(physically realizable)

, - U . i
11.755 + 1

A dynamic response for this decoupled system to a set point change of 0.01
in the top composition is given in Figure 21.13a, and the tuning values and per
formance are summarized in Table 21.6. This theoretically best decoupling per
formance is quite good, with a much lower IAE than the multiloop case reported
in Table 21.2 (energy balance), although in this example the set point change
has twice the magnitude. Note that both manipulated variables changed imme
diately when the set point was changed. The immediate change in MVi is from
the controller Gc\, while the immediate change in MV2 is from GcxDl2, so that
the decoupler acts before the controlled variable XB is disturbed. Again, the
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FIGURE 21.13

Explicit decoupling in distillation control, Example 21.6: ia) based on a perfect model; ib) with 15%
gain errors in decouplers. (Scales: One tick = 0.02 for XD and XB, 0.50 for FR, 0.30 for Fv.)
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similarity to feedforward is apparent, because the decoupler bases an adjustment
in a process input on another process input.

However, the engineer must also consider the sensitivity to modelling errors.
This decoupled system will become unstable for errors of about 10% in both de
coupler gains; an example with 15% errors is given in Figure 21.13b, which shows
the instability. No amount of detuning (short of Kc2 = 0) in the feedback controllers
will stabilize this response. Although the decoupler theoretically could improve
performance, it is doubtful that sufficient model accuracy is generally available to
use simplified (two-way) decoupling for processes with large relative gains.

With perfect decoupling, it is theoretically possible to improve control per
formance by reducing unfavorable interaction through decoupling as well as to
degrade control performance by misapplying decoupling to a system that has fa
vorable interaction. Decoupling should be considered only after an analysis of
the relative disturbance gain has established that interaction is unfavorable for
the expected disturbances and that performance with decoupling is not extremely
sensitive to model errors.

• Decoupling improves control performance only when process interaction is
unfavorable, so favorable interaction should not be reduced by decoupling.

• The stability and performance of full decoupling can be very sensitive to model
errors when the relative gain is greater than 1. One-way decoupling has much
lower sensitivity to model errors.

An important observation is that greater control system complexity does not
always lead to better performance!

21.6 H MULTILOOP CONTROL PERFORMANCE THROUGH
ENHANCEMENTS: SINGLE-LOOP ENHANCEMENTS

Many enhancements were presented in Part IV to improve the performance of
single-loop control systems. These methods are also widely applied to the control
of multiloop systems, as will be covered in more depth in Part VI, but a brief
example is presented here to complete the methods for achieving good multiloop
performance. The distillation tower in Figure 21.14 has multiloop control of the



FIGURE 21.14

Multiloop distillation control with single-loop
enhancements.

two product compositions. In addition, the control performance is enhanced by
inferential tray temperature control, which could provide a surrogate variable for
control when the top analyzer provides an infrequent feedback measurement. Also,
the reboiler utility and reflux flows have cascade control to reduce disturbances that
result from changes in supply pressures. Other enhancements, such as feedforward,
could be included as needed.

21.7 a ADDITIONAL TOPICS IN MULTILOOP PERFORMANCE
The material in Chapters 20 and 21 presents only an introduction to the advances
made in meeting the daunting challenges of multiloop control. The following
subsections introduce a few selected additional topics.
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Regulatory Control
Examples 21.2 and 21.3 on distillation control demonstrated that the regulatory
control loops influence the composition control performance. An excellent control
design objective is to select regulatory designs giving manipulated variables that
simultaneously reduce transmission interaction (i.e., make the relative gain close
to 1) and improve the disturbance rejection capability of the system (i.e., make
the magnitude of the relative disturbance gain small). An example of such an
approach is the simple distillation design developed by Rhyscamp (1980), which
has proved remarkably successful on two-product distillation towers (Stanley et
al., 1985; Waller et al., 1988). When simple regulatory loops do not provide these
advantages, calculated variables can sometimes be derived that potentially improve
multiloop performance (Haggblom and Waller et al., 1990; Johnston and Barton,
1987); however, the sensitivity of these approaches to model errors has not been
fully evaluated.
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Integrity: Integral Stabilizability and the Niederlinski Index
As already discussed in Section 21.3, the integrity of a multiloop control system
is an important property that is influenced by decisions on loop pairing. Here, a
further test for acceptable closed-loop behavior is presented; like the relative gain,
this test can be performed with minimal information about the system, i.e., steady-
state process gains. For this test, we consider multiloop controllers with integral
modes, a very common situation in practice.

For integrity, we want the control system to have the following property, which we
term integral stabilizability: stable control can be achieved when the signs of the
controller gains are the same for (1) the single loop situation (with all other loops in
manual) and (2) the multiloop situation (with all other loops in automatic).

We begin the test by arranging the steady-state process gain matrix so that the loop
pairings involve the 1-1,2-2,..., n-n diagonal elements in K; note that this step
only changes the variable order in the model. Then, the following calculation is
performed to evaluate the integral stabilizability of the plant with the proposed
loop pairing:

/ \

If NI = detK < 0 the system is not integral-stabilizable

Only control designs with the Niederlinski index NI > 0 should be considered
further; those with NI < 0 should be excluded.

This test is sufficient but not necessary for lack of integral stability, which is un
acceptable behavior. (The condition is necessary and sufficient for 2 x 2 systems.)
The proof of this condition and limitations on the plant dynamics for its appli
cability are presented in Grosdidier et al. (1985). Further results on integrity can
be found in Grosdidier et al. (1985), Chiu and Arkun (1990), Morari and Zafiriou
(1989), and Campo and Morari (1994).

Loop Pairing
Some alternative guidelines for loop pairings have been published by Yu and
Luyben (1986), Economou and Morari (1986), and Tzouanas et al. (1990). The
selection of the final design, after many alternatives have been eliminated using
methods in this chapter and references, relies on experience with similar units or
dynamic simulation.
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The models used in control design never exactly match the true process behavior,
and this factor would normally influence the performance of the system. While this
issue could be addressed with simple assumptions and reasonable computation for
single-loop systems, multiloop systems involve many more model parameters, all
of which can be in error. Errors are introduced through empirical identification and
as a result of changes in plant operation, such as flow rates and reactor conversions.
Thus, the parameter errors in linearized models are not independent; that is, they
have structure that must be considered in the analysis of robustness. The importance
of robustness was discussed clearly by Doyle and Stein (1981) and is covered in
Skogestad and Morari (1987b) and extensively by Morari and Zafiriou (1989).

Dynamics
The results of Example 21.4 demonstrated the importance of considering inter
acting dynamics. The frequency-dependent relative gain was introduced in the
previous chapter to evaluate interaction near the closed-loop critical frequency,
and it has been shown that reliance only on steady-state analysis measures can
result in good designs being improperly eliminated (e.g., Skogestad et al., 1990).
Any predictions of control performance using the methods introduced in this chap
ter should be validated with a simulation of the closed-loop response. Since the
design procedures usually result in a few candidates and simulation software is
readily available, this final step should take little engineering effort.

21.8 □ CONCLUSIONS
The main result of Chapters 20 and 21 is the evaluation of the key effects of
interaction on multiloop control. All of the factors that affect single-loop control
affect multiloop control in similar ways. Table 21.7 summarizes the effects of
interaction on performance.

In this chapter, methods have been presented for achieving good control per
formance in multiloop systems through variable pairing, tuning, and simple en
hancements. The methods have demonstrated that no single control performance
predictor is available; for example, control strategies with relative gain values near
1.0 may not perform well for the disturbances of greatest importance. Even using
the relative disturbance gain alone can lead to improper designs. For example,
the pairing and tuning of a multiloop strategy can be selected to give better per
formance for a specific controlled variable (or variables) of particular importance
over other variables of much less importance. Thus, the multiloop strategy must
be selected with careful attention to the control objectives and process dynamic
responses.

The flowchart in Figure 21.15 gives a procedure by which the analysis meth
ods presented in this chapter can be applied to a 2 x 2 system analysis. Naturally,
the control objectives must first be defined; then the necessary process informa
tion must be developed. The minimum information includes all steady-state gains
as shown in Table 21.4 and some semiquantitative information on the relative

Conclusions
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dynamics between the manipulated and controlled variables is needed to select
pairings based on dynamics and calculate the tuning factor. Finally, dynamic mod
els, at least linear transfer functions and perhaps nonlinear models, are required if
simulation verification is performed.

In the first step in the flowchart, the process is screened for the feasibility
of multiloop control through evaluation of the controllability and operating win
dow; if multivariable control is not possible, a different selection of variables or
a process equipment modification is required. The first decision in the flowchart

TABLE 21.7
Effects of interaction on multiloop performance

Issue Measure Comments

F e a s i b i l i t y o f L d e t K ^ O
feedback control

Performance and
integrity

Stability and
tuning

Performance

Enhancements

2. Specified set points can be
achieved for expected
disturbances
1. For n x n, not integral-stabilizable
if

/
detK < 0

v n K„
For 2x2, not integral-controllable if
ku < 0
2. ku > 0

For 2 x 2, An

Relative disturbance gain (RDG)

1. Independent relationships exist
between manipulated and controlled
variables
2. Manipulated variables have sufficient
range; i.e., the process has sufficient
capacity
1. Niederlinski criterion (or RGA for 2x2)
used to evaluate whether controllers with
integral modes can stabilize both single
and multiloop systems without changing
sign of controller gains

2. Usually, pairing selected that functions
in single-loop and multiloop. ik{j = 0 or
ktJ < 0 sometimes acceptable)
Interaction influences the characteristic
equation, so it influences stability.
Controller tuning must be modified
for single-loop, usually detuned.
Pairings are selected to reduce
unfavorable interaction (|RDG||A:rf| small)
and provide fast feedback dynamics for
important loops.
Designs, such as cascade and
feedforward, that reduce the effects of
disturbances are always beneficial.
Decoupling can be used to reduce the
effects of unfavorable interaction
(|RDG| > 1) when the transmission
interaction (RGA) is not too large



Ensure controllability and
operating window

695

Conclusions

N "

Pair loops to give good
performance (e.g., fast dynamics)
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Add monitor to
ensure stability

Tune important controllers tightly,
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interaction
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Select pairingsv°
Niederlinski criterion > 0
I Kd || RDG | small
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Select decoupling approach,
if any, based on

* performance
* sensitivity to errors

Tune controllers

FIGURE 21.15

Flowchart for selecting 2x2 pairing and tuning.

is whether both controlled variables are of equal importance. If one is of much
greater importance, the left branch is taken. The important controlled variable is
paired with the manipulated variable that provides the fastest feedback dynamics
(along with satisfactory range) if a significant difference exists. A check is made
to determine whether the controlled variable can be improved (through faster dy
namics) by pairing it with a manipulated variable giving a zero relative gain; this
step would be taken only in unusual situations in which the controlled variable is
extremely important. After pairing has been selected, the control loops are tuned.
Since the left-hand path is for unequal control priorities, the more important loops
should be tuned to retain favorable interaction and reduce unfavorable interaction,
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and the less important loops should be tuned in a manner consistent with improv
ing the overall performance and maintaining stability. Decoupling would probably
not be considered, because detuning alone would reduce the effects of unfavorable
interaction.

If the controlled variables are of equal importance, the pairings should be
selected according to the analysis of the relative disturbance gain. If substantial
unfavorable interaction remains, consideration would be given to decoupling, es
pecially one-way decoupling to prevent the sensitivity problems encountered with
two-way decoupling when the process has a large relative gain. Finally, the con
trollers would be tuned using methods described in Chapter 20. This procedure
can lead to a good multiloop control strategy for the given process.

The concepts and methods presented in this chapter can be applied to a mul
tiloop system of any order. However, the equations for the relative disturbance
gain in this chapter are limited to a 2 x 2 system; they have been extended for
higher-order systems by Skogestad and Morari (1987a), who also introduce an
alternative measure of multiloop performance.

Finally, this approach often, but not always, provides satisfactory performance.
However, depending on factors such as the feedback dynamics and the disturbance
type, magnitude, and frequency, situations exist in which no multiloop feedback
design provides acceptable dynamic performance. Other steps for improving con
trol performance include multivariable control, which is covered in Chapter 23,
and process alterations.
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The methods in Chapters 20 and 21 can be applied in sequence, as shown in Figure
21.15, to eliminate poor alternatives, rank likely performance of feasible designs,
and evaluate the appropriateness and sensitivity of decoupling. This analysis is based
on quantitative analysis of the linearized system.

QUESTIONS
21.1. The following transfer functions were provided by Wood and Berry (1973)

for a methanol-water separation in a distillation column similar to Figure
20.3. The products are expressed as mole % light key, and the reflux FR,
the reboiler steam Fs, and the disturbance feed flow F are in lb/min; time
is in min.

-18.9e-3*-»
XDis)
XBis) ]-

\2.&e-s
\6.1s + 1
6.6*T7v

21s+ 1
-19.4e-3j

L 10.9^ + 1 14.4s + 1 J

\FRis)]
[Fsis)} +

-8.1* n3.8g
14.9j +1
49^,-3.4*

L 13.2s + 1 J

Fis)

Answer the following questions for the feed flow disturbance.
(a) Determine whether the input-output combination is controllable.
ib) Determine whether either loop pairing can be eliminated based on the

sign of the relative gains (Xy > 0).
ic) Select the loop pairing based on an estimate of the control perfor

mance.
id) Determine the initial tunings for PI controllers for the best loop pairing.

Answer this question for (1) the two product compositions of equal
importance and (2) the top product quality more important.

ie) Discuss whether decoupling is recommended and if so, design the
decoupler.

if) Discuss whether feedforward compensation would improve the control
performance and if so, design the feedforward controller.



ig) The model was determined from empirical identification experiments.
Discuss the likely errors in the model and the effects of these errors on
the design conclusions.

For (c) through if), compare the multiloop control performance for each
controlled variable with its single-loop performance.

21.2. (a) Derive the expressions for the relative disturbance gain (RDGi) and the
integral error (/ E\ dt) for the following inputs (1) ASPi, (2) ASP2,
(3) a disturbance that has the same transfer function as MVi, and
(4) a disturbance that has the same transfer function as MV2.

ib) Relate the value of the relative disturbance gain, RDGi, to the ratio
of changes in the manipulated variable for single-loop and multiloop
control, (AMV|)ml/(AMVi)sl. to the same disturbance.

ic) Why is the magnitude, not the value, of the RDG used in evaluating
performance?

id) Is the RDG scale-dependent?
21.3. For a 2 x 2 control system with PID controllers and decoupling, write the

equations for digital implementation of all control equations, or provide a
sample computer program.

21.4. A linear transfer function model of a chemical reactor was determined by
Foss et al. (1980) and simplified by Marino-Galarraga et al. (1987a). The
reaction of oxygen and hydrogen over a catalyst occurs in two beds, with
cold hydrogen quench added between the beds. The reactor is shown in
Figure Q21.4, and the model is given below. The units are composition in
mole%, temperatures in °C/167.4, flow in L/min/13.5, and time in sec/87.5.
Assume that both controlled variables are of equal importance. Answer the
following questions for two cases: (1) the input perturbation is a set point
change to the composition controller and (2) the input perturbation is a
change to the cooling medium temperature, so that the disturbance transfer
function is the second column of the following matrix (the same effect as
a change in the manipulated quench temperature).

Lew J
r -2.265<?-1326v 0.746<T2-538* '

0.786s + 1 0.092s + 1 \FQis)]
1.841c-a44& -0.654e-°-786s [TQis)i

L 0.917s+ 1 0.870s + 1 J

ia) Determine whether the input-output combination is controllable.
ib) Determine if either loop pairing can be eliminated based on the sign

of the relative gains.
ic) Select the loop pairing based on an estimate of the control performance.
id) Determine the initial tunings for PI controllers for the best loop pairing.

Answer this question for (1) the temperature and product composition
of equal importance and (2) the temperature more important.

ie) Discuss whether decoupling is recommended and if so, design the
decoupler.

if) Discuss whether feedforward compensation would improve the control
performance and if so, design the feedforward controller.
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For (c) through if), compare the multiloop control performance for each
controlled variable with the single-loop performance.

21.5. TAvo physical systems with exactly the same equipment structure, pressures,
and flow rates in Figure Q21.5 are considered in this question. The only
difference is that in system (a) phase I is a liquid (this is a decanter), whereas
in system (6) phase I is a vapor (this is a flash drum). You may assume that
the flows are proportional to the square root of the pressure drop and the
valve % open; the valves are all 50% open at the base-case conditions. The
three valves are available for manipulation, and three controlled variables
are shown as sensors. The following additional information is provided
about the variability of the process operation: the feed flow is 1400 to 2600
L/min, the percent overhead material in feed is 1 to 5%, and the external
pressures are essentially constant. Select the best control loop pairing and
discuss the differences, if any, between the results for systems (a) and ib).

250 psi
2093 L/min

2 GMPhase I
180 psi

Liquid
phase

V2

30 psi
60 L/min

id) Phase I is liquid
ib) Phase I is vapor

4&] ▶ 30 psi
v f 2 0 3 3 L / m i n

FIGURE Q21.5

21.6. Answer the following questions.
(a) Is there a feedback control system for system B2 in equation (21.6)

that will prevent the inverse response?
ib) For system Bl in equation (21.5), can the multiloop feedback system

experience an inverse response with two PID controllers?
ic) Values of the relative disturbance gain (RDG) can be related to the

change in the manipulated variables under multiloop control. Deter
mine the value of AMVi for a disturbance and relate this to RDGi •

id) Is it possible to have a relative gain % l .0 and a large RDG?
ie) Is it possible to have no interaction of any type (e.g., Kx2 = K2x =0)

and have a large RDG?
if) Feedforward control can be applied on a multiloop system. Modify the

calculation of the relative disturbance gain (RDGi) and the integral
error (/ E\ dt) for various feedforward control designs (feedforward
to MVi only, to MV2 only, and to both) using the same disturbance.

ig) The relative disturbance gain provides the ratio of multiloop to single-
loop performance. Discuss how to use this information when compar
ing the performance of two designs with different single-loop perfor
mances.



21.7. The outlet temperature of the process fluid and the oxygen in the flue gas
can be controlled in the fired heater in Figure Q20.10 by adjusting the fuel
pressure (flow) and the stack damper % open. A dynamic model for the
fired heater in Figure Q20.10 was reported by Zhuang et al. (1987) and is
repeated here.

0 . 6 - 0 . 0 4
Tis)~\T(S)] =I Ms)}

2400s2 + 85s + 1
-1.1

3000s2 + 90s + 1
0.30

70s + l 70s + l

Pspis)
Viis)

The inputs and outputs are in percent of the range of each instrument, and
the time is in sec.
(a) Determine whether the input-output combination is controllable.
ib) Determine whether either loop pairing can be eliminated based on the

sign of the relative gains.
ic) Determine whether decoupling will improve the control performance.
id) Determine the PI controller tuning for the best multiloop control, with

or without decoupling.

21.8. The following transfer functions were provided by Waller et al. (1987) for
a distillation column. System I was similar to Figure 20.3 except that the
controlled product compositions were not measured directly; they were
inferred from tray temperatures (°C) near the top, T4, and near the bottom,
T14, trays. System II had the distillate/(distillate + reflux) as a manipulated
variable rather than the reflux; this is designated as R. The flows are in
kg/h; time is in min. Answer the following questions for both systems (the
same process with different regulatory control designs) and compare the
results.
System I: Energy balance regulatory control

T -0.045«-°-5j 0.048g_0-5v 1
Tds)
Txds)]

8.1s+ 1
-0.23g-'-5'

L 8.1s+ 1

lls + 1
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10s + 1 -I
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L 9.2s + 1 J
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System II: Modified regulatory control; R = FD/iFD + FR)

[ Tds) 1 =
LTxds)}

6.1e-°5s 0.01e-°<5s 1
lls + 1 13s+ 1
34g-13* 0.35g_0-5s

L 12s + 1 10s + 1 -I
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Fsis) +

-0.026g-2.5s -\

23s + 1
-0.81g~A

L 13s+1
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(a) Determine whether the input-output combination is controllable.
ib) Determine whether either loop pairing can be eliminated based on the

signs of the relative gains.
ic) Select the loop pairing based on an estimate of the control perfor

mance.
id) Determine the initial tunings for PI controllers for the best loop pairing.

Answer this question for (1) the two product compositions of equal
importance and (2) the top product quality more important.

701

Questions



702

CHAPTER 21
Multiloop Control:
Performance Analysis

(g) Discuss whether decoupling is recommended and if so, design the
decoupler.

if) Discuss whether feedforward compensation would improve the control
performance and if so, design the feedforward controller.

For (c) through if), compare the multiloop control performance for each
controlled variable with the single-loop performance.

21.9. (a) The limit for the integral error of a decoupled system in equation
(21.20) as the gain errors approach zero is k x x Kj x Ti i /Kcx Kx x. Explain
why this differs from equation (21.9).

ib) Explain why the gain decoupler errors in Example 21.10 lead to an
unstable system. (Hint: Consider the relative gain or Niederlinski cri
terion for the system with decouplers.)

(c) Derive the expression in equation (21.20) for the integral error for a
2x2 multiloop system with PI controllers and decouplers, with gain
errors in the decouplers.

21.10. The process with two series chemical reactors in Example 3.3 is consid
ered in this question. The process flexibility is increased by allowing the
temperatures of the two reactors to be manipulated independently. The two
controlled variables are the concentrations of reactant A in the two reactors.
The rate constant can be expressed as 5.87 x io5g-5000/r (with temperature
in K), and the disturbance is feed composition, Cao-
(a) Determine whether the input-output combination is controllable.
ib) Determine whether either loop pairing can be eliminated based on the

signs of the relative gains.
(c) Determine whether decoupling could improve the dynamic perfor

mance, especially if the most important controlled variable is the con
centration in the second reactor.

21.11. Doukas and Luyben (1978) reported the transfer function model for the
distillation column with a side stream product, shown in Figure Q21.11.
The feed contains benzene (B), toluene (T), and xylene (X). The controlled
and manipulated variables are given in the figure, with the benzene in the
side stream of much less importance than the other controlled variables.
The linearized transfer function model is

r-1.986g-°-7s 5.24g"60s 5.984g"2-24s n

XDT(s)
XSds)
XSxis)

LXBTis)J

66.7s + 1
0.002g-0fe
(7.14s+ 1)2
-0.176g-°-5'
(6.9s +1)2
0.374g"7-75s

400s + 1
-0.33g-°75
(2.4s + l)2
448g-0.5.Y
11.1s+ 1

-11.3g-38j

14.3s + 1
2.38g-°-42*
(1.43s+ 1)2
-11.7g-!-*
12.2s + 1

-9.81g~165

RR(s)
LS(s)

LQB(s)

L 22.2s+ 1 (21.7s+ 1)2 11.4s+ 1
For this system, determine the best loop pairing by following the method
in Figure 21.15.

21.12. Design an improved control system to improve the dynamic performance
of the composition in the fuel system in Figure 21.7 when



r \

RR (ratio)
LS (Ibmol/hr)

XDT (mole frac)

XSB
XSX

QB (BTU/hr)

FIGURE Q21.11
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(a) A measurement of the total fuel flow to the consumers is available.
ib) A measurement of the gas fuel (L) is available.

21.13. Calculate the controller tuning for the blending system in Table 21.1 with
Ai = 0.95. Discuss which loop pairing would be preferred.

21.14. (a) Derive the closed-loop transfer function for a 2 x 2 system with de
coupling.

ib) From the result in (a), determine whether one-way decoupling influ
ences the stability of the closed-loop system.

21.15. The series of well-stirred chemical reactors with equal volumes shown in
Figure Q21.15 is to be controlled. The controlled variables are the temper
ature and reactant concentration in the third reactor, and the manipulated
variables are the inlet concentration set point and the cooling valve v2. The
chemical reaction is first-order, the rate constant has an Arrhenius rela
tionship with temperature, and the heat of reaction is negligible. The heat
exchanger dynamics are negligible. For this example, the concentration
is much more important than the temperature, but both should have zero
steady-state offset for a steplike disturbance. Design the loop pairings and
tuning and discuss the rationale for the design.

21.16. Answer the following questions for two physical processes: (1) the chem
ical reactor described in Section C.2, and (2) the same chemical reactor
with no heat of reaction, AHnn = 0. Both processes have two feedback PI
controllers: T -> Fc and Ca -▶ Cao (with the feed flow unchanged).
(a) Does process interaction influence the stability of the closed-loop sys

tem? Provide quantitative analysis to support your conclusion.
ib) Does process interaction influence the dynamic performance (behav

ior) of the closed-loop system? Explain your answer briefly.
21.17. Design feedforward controllers for the distillation column under energy

balance control, described by equation (21.1), for a measured disturbance in
feed composition. Design the feedforward controller for the two following
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FIGURE Q21.15

situations, discuss the differences in the results, and discuss the implications
for application of each.
(a) The distillate composition Xd is to be maintained constant, and the

bottoms composition XB is not controlled and may vary.
ib) The distillate composition Xd and the bottoms composition XB are

both to be maintained constant via the feedword controller.


