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16.1 n INTRODUCTION
Linear control theory provides methods for the analysis and design of many suc
cessful control strategies. Control systems based on these linear methods are gener
ally successful in the process industries because (l) the control system maintains
the process in a small range of operating variables, (2) many processes are not
highly nonlinear, and (3) most control algorithms and designs are not sensitive to
reasonable (±20%) model errors due to nonlinearities. These three conditions are
satisfied for many processes, but they are not satisfied by all; therefore, the control
of nonlinear processes must be addressed.

It is possible that the response of a nonlinear system could give better perfor
mance than a linear system and, therefore, a nonlinear control calculation might
be better than any linear algorithm. However, there is no recognized, general non
linear control theory that has been widely applied in the process industries. (An
example of a nonlinear algorithm applied to level control is given in Chapter 18.)
Therefore, the goal of the approaches in this chapter is to attain the performance
achieved with a well-tuned linear controller. To reach this goal, the control methods
in this chapter attempt to achieve a system that has a linear closed-loop relation
ship. If an element in the control loop is nonlinear, the approach applied here is to
introduce a compensating nonlinearity, so that the overall closed-loop system be
haves approximately linearly. This compensating nonlinearity may be introduced
in the control algorithm or in physical equipment, such as a sensor or final element.

The next section begins the analysis by introducing a method for determining
when nonlinearities significantly affect a control system. This analysis is extended
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to evaluate the proper fixed set of tuning constants for a linear PID controller applied
to a nonlinear process. If a fixed set of tuning constants and linear instrumentation
are not satisfactory, improvements can be achieved by adapting either the control
calculation or the equipment responses. First, a common method for adapting the
controller tuning in real time to compensate for nonlinearities is presented. Then
the same concept is applied to introduce compensating nonlinearities in selected
instrumentation, such as the control valve, to improve performance.

16.2 01 ANALYZING A NONLINEAR PROCESS WITH LINEAR
FEEDBACK CONTROL
A relatively simple process is analyzed in this section so that analytical models
can be derived; the general approach is applicable to more complex processes.
The process is shown in Figure 16.1a, which is the three-tank mixer considered
in Examples 7.2 and 9.2. The outlet concentration of the last tank is controlled by
adjusting the addition of component A to the feed to the first reactor. The equations
describing the system are derived in Example 7.2 and summarized as follows:

^ b ( * a ) b + F A i x A ) A . , . . . . .* a o = „ , „ w i t h F A = K v v ( 1 6 . 1 )Pb + tA
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Transfer Functions
Gcis) = Controller
Gvis) = Transmission, transducer, and valve
Gpis) = Process
Gsis) = Sensor, transducer, and transmission
Gdis) = Disturbance

FIGURE 16.1

Variables
CVis) = Controlled variable
CVm(s) = Measured value of controlled variable
Dis) = Disturbance
Eis) = Error
SPCs) = Set point

ib)

Mixing process: (a) schematic; ib) control system block diagram.



vt dxAj
dt

= iFA + FB)(xA(/_i) - xAi) for i = 1, 3 (16.2)

Note that the differential equations are nonlinear. We can linearize these equations,
express the variables as deviations from the initial steady state, and take the Laplace
transforms to yield the transfer function model:

Gpis)Gds)Gds) Gpis)Gcis)•*A3

SPis) 1 + Gpis)Gds)Gds)Gds) 1 + GolCO °6'3)
where the valve transfer function is a constant lumped into Gpis) and the sensor
Gsis) = 1.0.

Gods) = Gpis)Gds)Gds)Gds) « Gpis)Gcis)
K,

(™ + l)3 Gds)
(16.4)
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where Kp = Kv
FbsJxaa —xAb)s

L (Fas + Fb,)2
K„ = 0.0028

Vx =

(16.5)

(16.6)
Fbs + FAs

This linearized model clearly demonstrates how the gain and time constants
depend on the volumes, total flow, and compositions. We will consider the response
of the system for various values of one operating variable, the total flow rate
iFA + Fb), which has the greatest variability for the situation considered here. In
the scenario, the production rate changes periodically and remains nearly constant
for a long time (relative to the feedback dynamics) at each production rate. The
process dynamics are summarized in Table 16.1 for the range of flow variability
(i.e., production rates) expected. The variation in the process dynamics due to the
nonlinearity is not randomly distributed, because in this example the effect of an
increase in flow rate is to decrease the process gain and time constants concurrently.
This type of correlation is typical for nonlinear processes and demonstrates the
need for careful analysis of the dynamic responses at different operating conditions.

TABLE 16.1

Summary of process dynamics and tuning for the three-
tank mixing process*

Case Process parameters Control ler parameters

K, Kc T, Td

A 3 . 0 0 . 0 8 7 1 1 . 4 13.8 25.1 1.82
B 4 . 0 0 . 0 6 4 8 . 6 18.6 19.0 1.4
C 5 . 0 0 . 0 5 2 6 . 9 23.1 15.2 1.10
D 6 . 0 0 . 0 4 3 5 . 7 27.9 12.7 0.92
E 6 . 9 0 . 0 3 9 5 . 0 30.0 11.0 0.80

*For the combinations of process dynamics
margin for each case is 1.7.

and tuning in this table, the gain
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Naturally, other factors, such as incorrect data in fundamental models or noise
in empirical models, contribute to the modelling errors, but change in operating
conditions is often the dominant factor causing the difference between models and
true process behavior.

The values in Table 16.1 demonstrate that the changes in dynamic model parameters
due to nonlinearity can be highly correlated

The effects of nonlinearity on two important system characteristics, stability
and performance, are now investigated. As demonstrated in Chapter 10, the process
dynamics influence the stability of a closed-loop system, and to achieve a stable
control system the tuning parameters are adjusted to be compatible with the process
dynamics. The PID feedback controller tuning for this process has been determined
for five different flow rates that span the expected range of operation. (Note that
Case E in Table 16.1 is the same as Example 9.2.) The tuning was determined by
evaluating the process reaction curve, fitting an approximate first-order-with-dead-
time model, and using the Ciancone correlations. Similar trends would be obtained
for other tuning methods such as Ziegler-Nichols. It is important to recognize that
the tuning reported in Table 16.1 has a reasonable margin from the stability limit for
each case. In fact, the gain margin for all cases is about 1.7. The results in the table
clearly indicate that the values of "good" tuning constants change significantly,
over 50%, for the range of process operating conditions considered. This analysis
indicates that the nonlinearity is significant for the changes in flow considered in
this scenario.

Calculating the controller tuning for cases covering the range of dynamics occurring
in the process provides a basis for determining whether the controller tuning should
be adapted.

The simplest control design approach would be to use a single set of tuning
constants for all the operating conditions. The results in Table 16.1 provide the
basic information needed to decide whether to use this tuning approach. If the
tuning constants were not very different, it would be concluded that either the
nonlinearities are mild or the operating conditions do not change much from the
base case. For either situation, a constant set of tuning constants, which could be
taken as the average values, would yield good PID feedback control performance.

If the proper values of the tuning constants differ significantly, as they do
in Table 16.1, further analysis is necessary. Recall that the tuning for each case
was determined to give good dynamic response and a proper gain margin for the
nominal process model in that case. The single set of tuning constants to be used
for all process models in the table must provide acceptable (if not good) feedback
control performance for all cases. Since the process dynamics change, the stability
margin of the closed-loop system can change, and the closed-loop system can



become highly oscillatory or unstable for an improper choice of fixed tuning.
Since instability and severe oscillations are to be avoided, the overriding concern
is maintaining a reasonable stability margin for all expected process dynamics.

To ensure that the control system with varying process dynamics performs
acceptably over the expected range of operation, the worst-case dynamics must
be identified. This worst case gives the poorest control performance under the
feedback controller and is usually the closed-loop system closest to the stability
limit. The Bode plots of Gpis) for three of the cases in Table 16.1 are given in
Figure 16.2. The results show that Case A has the lowest critical frequency and
the highest amplitude ratio at its critical frequency. This result conforms to our
experience that processes with longer time constants are more difficult to control.
Thus, Case A would be selected as the most difficult process operation, or the
worst case, within the scenarios.

The Bode analysis of Gpis) is substantiated by the results in Table 16.1,
which indicate that Case A has the least aggressive feedback controller, because
the controller gain is smallest and integral time is largest. Applying the controller
tuning from Case A would result in a stable system for all cases, albeit with poor
performance for some cases. Using a more aggressive set of tuning constants, Case
E, for example, would lead to good performance in some cases, but the closed-loop
performance would be very poor, and perhaps unstable, for other cases.

Dynamic simulations of closed-loop systems with various tunings are shown
in Figures 16.3 and 16.4. The results in Figure 16.3a and b give the dynamic
responses of the closed-loop system, with controller tuning from Case A, for two
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Bode plot for three-tank mixing system (cases defined in Table 16.1).
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Dynamic respones for the mixing system with tuning from Case A iKc = 13.8,
Ti = 25.1, and Td = 1.82). (a) Case A process dynamics, FB = 3, gain margin
= 1.7; ib) Case E process dynamics, FB = 6.9, gain margin = 4.5.
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Dynamic respones for the mixing system with tuning from Case E (Kc = 30.0,
T) = 11.0, and Td = 0.80): (a) Case E process dynamics, FB = 6.9, gain margin
= 1.7; ib) Case A process dynamics, FB = 3.0, gain margin < 1.0, Indicating
instability.

different process dynamics. Note that the response, when controlling the plant
with dynamics for Case A (the most difficult plant to control), is well behaved.
The performance when controlling process E is rather poor, with a long time
required to return to set point, but at least the response is stable.

The results in Figure 16.4a and b give the closed-loop dynamic responses for
the controller tuning from Case E and the same two plant dynamics. Although
the performance for the process dynamics from Case E is good, the performance
for the process dynamics from Case A is unacceptable because the system is
unstable. Since excessive oscillations and instability are to be avoided at all cost,
the controller tuning used in Figure 16.4, based on the dynamics in Case E, is
deemed unacceptable.



When the feedback controller tuning constants are fixed and the process dynamics
change, the fixed set of tuning constants selected should have the proper gain margin
for the most difficult process dynamics in the range considered. This approach will
ensure stability, but it may not provide satisfactory performance. For the example,
the tuning from Case A is selected.
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This section has presented a manner for determining whether nonlinearities
significantly affect stability and control performance. The method is based on
the tuning and stability analysis of the system linearized about various operating
conditions. Also, a tuning selection criterion is given that is applicable when a
fixed set of tuning constants is used as the process dynamics vary. The goal of
this criterion is to provide the best possible control performance, with constant
tuning, while preventing instability or excessive oscillations. The resulting con
trol performance may be unacceptably poor, providing sluggish compensation for
some cases; therefore, the next sections present common methods for improving
performance, while preventing instability, by compensating for the nonlinearity.

16.3 Cl IMPROVING NONLINEAR PROCESS PERFORMANCE
THROUGH DETERMINISTIC CONTROL LOOP
CALCULATIONS
The approach described in the previous section can lead to poor control perfor
mance for two reasons. First, some process operating conditions lead to poor per
formance because of increased feedback dynamics (e.g., longer dead time and time
constants). Second, the fixed values for the feedback controller tuning constants
are too "conservative" for some process operations. Clearly, one set of tuning val
ues cannot prevent degradation in feedback control performance arising from the
changes in plant dynamics. However, modifying the tuning to be compatible with
the current process dynamics can maintain the feedback control performance close
to the best possible with the PID algorithm for whatever plant dynamics exist.

The approach for modifying the controller tuning constants through deter
ministic calculations can be applied to improve the control of some nonlinear
processes. The term "deterministic" is used to designate an unchanging relation
ship between the operating condition and the tuning constant values. The operating
condition is determined by measuring a process variable that is directly related to
the feedback dynamics. Then the control constants can be expressed as a function
of this measured variable, PV, as shown in the following equation:

MV = Kci?V) E +
1

/ 'Jo Eit')dt' + Td(PV)
dCV + / (16.7)T , i P V ) J n d t

The resulting controller is nonlinear. The stability analysis presented in Chapter
10 can be applied to this system assuming that the value of PV in equation (16.7)
changes slowly; that is, it has a much lower frequency than the closed-loop critical
frequency. When this condition is satisfied, the tuning can be considered constant
for the stability calculation.

This approach is demonstrated by applying it to the three-tank mixing system
introduced in the previous section. The correlations between the tuning constants
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and the measured variable that indicates the change in process dynamics—in this
example the flow—can be fitted by an equation or arranged in a lookup table.
Equations for the example are given below for the range of operation in Table 16.1
[3.1 < iFA + Fb) < 7.0] with the parameters determined by a least squares fit.

Kc = -5.64 + 7.368(FA + FB) - 0.3135(FA + FB)2
Ti = 50.37 - 10.626(Fi4 + FB) +0.7164(Fi4 + FB):
Td = 3.66 - 0.776(FA + FB) + 0.0525(FA + FB)2

(16.8)

The controller using tuning calculated by equations (16.8) can be applied to
the nonlinear mixing process. The resulting dynamic responses are essentially the
same as in Figure 16.3a and Figure 16.4a. The control performance is good for
the different flow rates because the tuning is modified to be compatible with the
process dynamics. Note that the performance in Figure 16.4a is better than in
Figure 16.3a, even though the controllers in both systems are well tuned, because
the feedback dynamics in Case E are faster. Comparison with Figure 16.3b and
Figure 16 Ab demonstrates the potential performance advantage of this approach
over maintaining the tuning constants at fixed values. The procedure introduced
in this example is summarized in Table 16.2.

The use of controller tuning modifications described in this section is often
referred to as gain scheduling, because early applications adjusted only the con
troller gain. With digital computers, all tuning constants can be easily adjusted
when required to achieve the desired control performance.

If adequate control performance is achieved through adapting only the con
troller gain and the controller gain should be proportional to feed flow, gain schedul
ing can be implemented as part of modified feedforward/feedback control design.
An example is given in Figure 16.5a for the feedforward and feedback control of
the simple mixing system. The model for the system is

Xm —
FAxA + FbXb

(16.9)
FA + FB

The flows and compositions for this mixing process are assumed to be the same

TABLE 16.2

Criteria for the deterministic modification of controller tuning

Deterministic modification of tuning is appropriate when

1. Constant controller tuning values do not provide satisfactory control performance
because of significant changes in operating conditions.

2. The nonlinearity can be predicted based on a process variable measured in real time.
3. The relationship between the measurement and the process dynamics can be

determined either from a fundamental model or from empirically developed models.
4. The changes in the process dynamics are at a frequency much lower than the

critical frequency of the control system.
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Examples of gain scheduling through feedforward control.

519

Improving Nonlinear
Process Performance
through Calculations

of the Measured
Variable

as the three-tank mixer. The steady-state equations describing the system are

Gpis) =
FbKxa)a - ixA)B] . K

iFA + FB)2
p

FB

Gcffis) = FB Gcfbis) = * < ( 1 + ^ )
(16.10)

with Kp and Kc constant. The stability margin is determined from the Bode analysis
by referring to GolC*), which follows for the example:

Gods) = Gpis)KcffKc (\ + ̂ M
(16.11)

To include the modification of the loop gain as indicated in equation (16.11),
the outputs of the feedforward and feedback controllers are multiplied, rather than
added as described in Chapter 15. Thus, as the feed flow increases, the effective
gain of the feedback controller iKcFB) increases to compensate for the decrease in
the process gain {Kp/Fb). Note that this design is an extension of the feedforward
design shown in Figure 15.14a to include feedback and therefore retains the good
disturbance response through feedforward control. This approach to controller gain
modification is a simplification of the general approach described in Table 16.2.

16.4 n IMPROVING NONLINEAR PROCESS PERFORMANCE
THROUGH CALCULATIONS OF THE MEASURED VARIABLE
In addition to the controller calculation, other elements in the control loop can also
be modified in response to nonlinearities. Relationships between the sensor signal
and the true process variable sometimes involve particularly simple nonlinearities
that can be addressed by programmed calculations during the input processing
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phase of the control loop. Some examples are temperature (polynomial fit of ther
mocouple) and flow orifice (square root, density correction on AP). In addition
to the linearization in the control loop, the availability of more accurate measured
values for use in control and process monitoring is another important benefit of
these calculations.

16.5 a IMPROVING NONLINEAR PROCESS PERFORMANCE
THROUGH FINAL ELEMENT SELECTION

Introducing a compensating nonlinearity in the control loop can be achieved by
selecting appropriate control equipment to compensate for nonlinearities. The final
control element, usually a valve, is the control loop element that is often modified in
the process industries, because the modifications involve little cost. Again, the ex
planation in this section assumes that the desired closed-loop relationship is linear;
if another relationship is required, the approach can be altered in a straightforward
manner.

Since the valve is normally very fast relative to other elements in the control
loop, only the gains of the elements are considered to vary. The linearized control
system is shown in the block diagram in Figure 16.1ft, and the loop gain for this
system depends on the product of the individual gains.

Gods) = Gpis)Gds)Gds)Gsis)
(16.12)= KpKvKcKsGpis)G*ds)G*ds)G*sis)

where the gains (£,) may be a function of operating conditions, and the dynamic
elements of the transfer functions [G*is) with G*(0) = 1.0] do not change sig
nificantly with operating conditions. The manipulated variable in the majority
of control loops is a valve stem position iv), also referred to as the valve lift,
which influences a flow rate. The feedback system behaves as though it is linear
if Gods) does not change as plant operating conditions change. Thus, linearity
can be achieved, even if the process gain iKp) changes, as long as the changes
due to nonlinearities in the individual gains cancel. In this section, a method is
described in which the valve nonlinearity is designed to cancel an undesirable
process nonlinearity, with the controller iKc) and sensor iKs) gains assumed to
be constant.

The final element selection is introduced through an example of flow control.
The relationship between the controller output and the flow is often desired to be
linear, so that the control system is linear. The relationship between the valve stem
position and the flow is given below (Foust et al., 1960; Hutchinson, 1976).

F = Fn C d v ) * P y
100 V p (16.13)

w h e r e F = fl o w
Fmax = maximum flow through system with valve fully open

Cdv) = inherent valve characteristic, which is a function of v
v = valve stem position (% open or closed)

APV = pressure difference across the valve
p = fluid density



This is simply the expression for the flow through a restriction, with the variable
v representing the valve stem position expressed in percent. The driving force for
the flow is the difference between the pressures immediately before and after the
valve, A Pv. The factor Cv is called the inherent valve characteristic and represents
the percentage of maximum flow at any given valve stem position at a constant
pressure drop, usually the design value. The Cv is a function of the valve design,
basically the size and shape of the opening and plug, which can be linear or any of
a selection of standard nonlinear relationships at the choice of the engineer. Three
common inherent valve characteristics are shown in Figure 16.6.

In the typical process design, the pressures just before and after the valve
change as the flow rate changes, as shown in Figure 16.7 (Quance, 1979). Typically,
the pressure at the pump outlet is not constant; it decreases as the flow through the
pump increases (Labanoff and Ross, 1985; Karassik and McGuire, 1998). Also,
the pressure drop from the valve to the pipe outlet increases as the flow increases.
For the example process in Figure 16.7, the pressure drop from the valve outlet to
the end of the pipe could be calculated from the energy balance on the fluid, with
losses determined from friction factor correlations (Foust et al., 1960):

2

P2 = Fou, + APe + J2 A/W + APpipe + APfit (16.14)

521

Improving Nonlinear
Process Performance

through Final Element
Selection

where Pou\ = outlet pressure (constant in this example)
APe = pressure drop due to change in elevation

AFhx/(F) = pressure drop due to heat exchangers (/ = 1,2)
AFpipe(F) = pressure drop in the pipe due to skin friction

APfit(F) = pressure drop in elbows and expansions due to form friction
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FIGURE 16.6

Three standard control valve inherent characteristics.
(Reprinted by permission. Copyright ©1976, Instrument Society
of America. From Hutchinson, J., ed., ISA Handbook of Control

Valves, 2nd ed.)
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Relationship between pressures and flow for a typical system.
(Reprinted by permission. Copyright ©1979, Instrument Society
of America. From Quance, R., "Collecting Data for Control
Valve Sizing," In. Tech., 55.)

Note that the last three pressure drop terms are functions of the flow rate (F). Due
to the functional relationships for Pi and P2, the pressure drop across the valve
(AF„ = P\ - P2), decreases as the flow increases. This demonstrates that only
part of the total pressure drop from the pump to the outlet is due to the valve; a
considerable amount of the pressure drop is due to other frictional losses.

The goal of a linear system—a constant closed-loop relationship, GolCO—
is achieved when the relationship between the controller output and controlled
variable is linear. In the case of flow control, the controller output can be taken
to be the valve position, and the controlled variable is the measured flow rate.
Since the pressure drop across the valve shown in Figure 16.7 is not constant, the
relationship between the controller output and the valve opening must introduce
a compensating nonlinearity for the overall gain to be constant. The nonlinear
ity can be introduced at low cost by selecting the appropriate valve characteristic
Cv. The typical nonlinearity applied for situations similar to Figure 16.7 is the
equal-percentage characteristic curve shown in Figure 16.6. The use of an equal-
percentage valve in a process similar to that shown in Figure 16.7, in which the
pressure drop decreases with flow, usually results in an approximately linear rela
tionship between the valve stem position and flow. An experimental investigation
of the application of an equal-percentage valve for the process described in Figure
16.7 resulted in the desired linear relationship shown in Figure 16.8. Note that the
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valve is about 85 percent open at the design flow; this is a bit high, since most
designers specify that the valve be about 70 to 80 percent open at the design flow.
In all cases, the valve opening at design must be such that the required maximum
flow can be achieved when the valve is fully open.

The general method employed for linearizing the flow control loop is now
extended to a more complex process: a stirred-tank heat exchanger, shown in
Figure 16.9. The energy balance for this system was derived in Example 3.7 and
used in Example 8.5, and this example uses the same design parameters. The model
is repeated here:

VpCp^ = FpCpiTo-T)-
aFcb+l

F, +
aFl iT - Tcm)

^•Pc^pc

Fr = F„ C^ AP_
100V Oe

(16.15)

(16.16)

In this example the pressure drop across the valve is assumed constant so that the
analysis will highlight the effects of other process nonlinearities; however, if this
were not the case, the same approach could be used, with an appropriate model for
the coolant pressures included. This model can be used to evaluate the linearity of
the steady-state process by calculating the steady-state value of the temperature at
various coolant flow rates by setting dT/dt = 0. The results of this calculation are
given in Figure 16.10a. This plot clearly shows the nonlinearity in the process gain,
which changes by a factor of more than 5 over the range of operation considered.

The goal of compensation would be to achieve a linear relationship between
the controller output and the temperature. The proper linear relationship would be

, „ v A T 7 9 . 8 - 1 2 2 . 5 ° C „ ° C(*')ave = A^% 100-5% = ~0A5% (16.17)

u

mm
(rc)

x d -

FIGURE 16.9

Heat exchanger control system.
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which is the total change in temperature over the total change in valve position
over the controllable range. To maintain the loop gain at this value while the
process gain changes, the valve characteristic must change. From the value of the
desired average gain in equation (16.17) and the process gain, AT/AFC in Figure
16.10a, the value of the characteristic can be evaluated as Cv = iKp)x,c/Kp. The
results of this calculation are given in Figure 16.10ft. As expected, the plot of Cv
versus valve stem has a slope with small magnitude where the process has a gain
with large magnitude (i.e., at low coolant flows). Also, the figures show that the
process gain, and therefore the slope of Cv versus valve stem, is nearly constant
over the higher range of flows. The steady-state behavior of the system with the
linearizing Cv installed gives Figure 16.10c; the linear relationship between the
controller output and temperature indicates that a PID feedback controller with
constant tuning parameters would be adequate.

It is important to understand the approach just demonstrated through these
flow and heat exchanger examples: therefore, it is summarized in Table 16.3. The
correct application of the procedure in this table frequently, but not always, results
in an equal-percentage characteristic. An example of an exception occurs when the
pressure drop across the valve is constant and the objective is flow control; then
a linear valve characteristic is required to achieve a linear relationship between
the controller output and the flow. Another exception occurs when a nonlinear
relationship between the controller output and controlled variable is required in
selected situations. For example, a cooling medium flow may normally be small
or zero but need to be increased to a large value quickly upon demand. This
situation would benefit from a nonlinear relationship between the controller output
and the flow, which is provided by the "quick-opening" characteristic. Both of
these characteristics are shown in Figure 16.6, and many other characteristics are
commercially available (Hutchinson, 1976).

There are many physical designs of the flow patterns, orifice shape, and valve
plug shape that are used to achieve the desired relationship. The specific design
selected depends on many factors (Hutchinson, 1976), such as the desire to
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Summary of nonlinear process behavior
and compensating characteristic.

TABLE 16.3
Method for achieving a linear control system by selecting the
proper valve characteristic
Goal: A linear relationship [i.e., constant G0l(*)] between the controller output

and the controlled variable. The valve stem position is assumed
to be equal to the controller output.

1. Determine the relationship between the pressure drop and the flow for the
specific process system considered, Kpl.

2. Determine the relationship between the flow and controlled variable
(if not flow rate), Kp2.

3. Calculate the Cv based on the results in (1) and (2) so that CvKpXKp2 =
constant. This will ensure that the steady-state gain of the process, as
"seen" by the controller, is constant.

4. Select the commercial valve with the inherent characteristic, C„, closest
to the function determined in (3).



1. Have tight closing (i.e., no flow) when the controller output is 0% (or 100%
for a fail-open valve)

2. Prevent sticking or clogging when the fluid is viscous or is a slurry
3. Accurately control the flow over a specified range
4. Reduce the pressure loss due to the valve, to conserve energy

The reader is cautioned that the selection of the proper control valve requires
more information than is provided in this brief introduction. Details of typical
valves, along with pictures of the internal details, are available and should be
consulted (Hutchinson, 1976; Andrew and Williams, 1979,1980; Driskell, 1983).
Also, engineering standards for sizing calculations and selection are available for
many common situations (ISA, 1992).

Finally, it should be noted that a nonlinearity can be added to the controller
calculation in place of the nonlinear valve characteristic. Many commercial digital
controllers have the facility to introduce a nonlinearity after the control algorithm,
in the output processing phase, via a general polynomial. However, the use of the
valve characteristic is still the most common means in practice for compensating
for simple process gain nonlinearities.
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16.6 Q IMPROVING NONLINEAR PROCESS PERFORMANCE
THROUGH CASCADE DESIGN
Other particularly simple nonlinearities can be addressed through cascade design
that compensates for nonlinearities in the secondary, resulting in a (nearly) linear
primary control system. One example encountered often in the process industries
is maintaining two quantities in a desired proportion. An example of blending is
shown in Figure \6.5b, although the concept applies to other proportions, such
as reboiler to feed in a distillation tower or reactant ratio in a chemical reactor.
The feedback controller can adjust the set point of the ratio controller as shown in
Figure 16.5ft. This is really another example of feedforward and feedback being
combined as a product rather than a sum; thus, Figure 16.5a and b are alternative
solutions to the same control design problem.

A cascade can also provide compensation for nonlinearities in other con
trol designs. An example is shown in Figure 16.11, in which the relationship

&
& - * ■
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i a ) i b )
FIGURE 16.11

Example of cascade control applied to linearize the loop.
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between the level and the level controller output is desired to be linear. Following
the arguments in this section, the valve in Figure 16.11a would normally have
an equal-percentage characteristic so that the relationship between the controller
output and flow would be approximately linear. However, since the flow controller
in Figure 16.11ft is a fast loop, the relationship between the primary controller
output and the flow would be linear, regardless of how well the characteristic com
pensated for other nonlinearities. Thus, the level control system is linearized as a
result of the cascade design. Notice that the cascade strategy retains the advantages
of improved disturbance response explained in Chapter 14.

16.7 □ REAL-TIME IMPLEMENTATION ISSUES

Adaptive methods involving real-time calculations are relatively straightforward to
implement; however, a few special considerations should be included. Some of the
methods for adapting tuning are based on one or more measurements, and should a
measurement not represent the true process conditions because of a sensor failure,
the resulting tuning constants could be far from the proper values, leading to poor
or even unstable performance. Thus, the measurement(s) used in the updating cal
culations should be checked for validity before being used to calculate the tuning.
An example is checking the consistency of a flow measurement with associated
flow rates in the process to ensure that a realistic flow is being used to update
tuning. In addition, the value of the measured variable used in the correlations, as
in equations (16.8), should be limited to the range over which the correlation is
valid. This practice serves two purposes:

1. Error due to an unrecognized sensor failure is limited.
2. Extrapolation of a correlation beyond its region of applicability is prevented.

An issue that may not have been apparent in the previous sections is the ever-
present need for defining the desired control performance. The tuning correlations
must reflect the performance desired; thus, the tuning correlations selected must be
based on control objectives consistent with the performance desired in the plant.
As will be explained in Parts V and VI, tight control of one variable may degrade
the control performance of another, more important variable because of process
interaction. Thus, the performance goals of all control loops must be determined
considering the overall process performance, which may lead to loose tuning for
selected loops.

Also, it would be wise to provide the facility to fine-tune the controller tuning
constants while retaining the correlations. One simple method would be to pro
vide an adjustable parameter in equations (16.8). The engineer could adjust the
parameter to achieve improved performance at one operating condition, and the
parameter would be unchanged for other operating conditions.

16.8 m ADDITIONAL TOPICS IN CONTROL LOOP
ADAPTATION
All of the methods described in detail in this chapter are based on the assumption
that the change in process dynamics can be predicted. This assumption, which
leads to the compensating calculations and equipment designs, is not always valid.



For example, the effect of acid flow on pH (i.e., the shape of a pH curve) can
change substantially due to changes in the buffering agents present; the effect
of temperature on reactor conversion can depend on the activity of the catalyst.
Therefore, there are situations in which deterministic methods are not appropriate.
One response to this situation would be to detune the controller substantially and
accept the performance degradation. Better performance would be possible with
an adaptive method that could "learn" the process dynamics from the real-time
system behavior and retune the controller based on the updated knowledge of
process dynamics. Two general retuning approaches are used in this situation:
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1. Periodic adaptive tuning at the request of a person, which is applicable when
the dynamics change infrequently

2. Continuous adaptive retuning, which is applicable when the dynamics change
frequently

The analysis of these approaches requires more advanced mathematics than is
consistent with the level of this book; however, a few of the methods are introduced
in the following paragraphs.

Periodic Retuning Based on Model Identification
In this approach an empirical model identification method is implemented to de
termine the dynamic model of the process, Gpis)Gds)Gsis). The model fitting
could use one of the methods described in Chapter 6 or other statistically based
methods. Based on this model, the method can automatically introduce updated
tuning using an appropriate controller tuning method. Note that this method in
troduces perturbations in the manipulated variable, which will disturb the process,
but only when a person requests a retuning.

Periodic Retuning Based on Empirical Identification of the
Critical Conditions
The Bode stability criterion highlighted the importance of the feedback system at
the critical frequency. The feedback system's stability and controller tuning can be
based on the amplitude ratio at the critical frequency, | God<*>c) I• Thus, some meth
ods of adaptive tuning determine the critical conditions empirically. One possible
approach would be to automate the Ziegler-Nichols continuous cycling experi
ment described in Section 10.8, Interpretation IV; however, this approach would
introduce large, prolonged disturbances. A more successful approach uses this
principle with a relay in place of the controller to determine the same information,
with smaller disturbances to the plant (Astrom and Hagglund, 1984).

Continuous Retuning Based on Statistics
It is possible to identify the process dynamics and determine how to modify the
tuning without introducing external perturbations, as long as some disturbances
occur in the process. Approaches to formulating and solving this problem are given
in Astrom and Wittenmark (1989).
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Continuous Retuning Based on Rules
Fine tuning of closed-loop systems based on the response to set point changes was
discussed in Chapter 9. This concept can be applied to disturbance responses so
that external perturbations are not necessary; then the method can be automated to
achieve continuous retuning. In one commercial system the control performance is
defined by the engineer in terms of (1) controlled-variable damping and overshoot,
(2) expected noise levels, and (3) bounds on the controller tuning constants (Bristol,
1977; Kraus and Myron, 1984). The retuning method uses rules to adjust the tuning
constants to achieve the desired performance.

16.9 m CONCLUSIONS
Modification of an element in the closed-loop system may be needed to attain high-
performance feedback control when the feedback dynamics change. The three
major steps are given in Table 16.2 for evaluating deterministic approaches for
compensating for nonlinearities. The first step is to determine whether the process
dynamics change significantly over the range of operation. If a fundamental ana
lytical model is available, the linearized expression can be evaluated through the
range of operating variables to determine whether the gain, dead time, and time
constants change significantly. If no analytical model is available, several linear
models can be determined through empirical identification at various operating
conditions. The variability in the tuning and degradation in performance due to
the nonlinearities can be determined as explained in Section 16.2. Since control
objectives are different from plant to plant, it is not possible to give a generally
applicable threshhold for when the nonlinearity is "significant." However, since
modelling errors of ±20% are expected in identification, nonlinearities causing
model parameter variations of this magnitude or less would normally not be con
sidered significant.

The approaches presented in this chapter are summarized in Table 16.4. The
order of presentation is from simplest and most reliable to most complex and
challenging to implement. Generally, the engineer will apply the methods in the
order presented in the table, proceeding only to the method needed to achieve
acceptable performance.

If the variability is significant and it can be predicted based on real-time
measurements, an element can be introduced to linearize the control loop by com
pensating for the nonlinearity. The compensating element can be in any of the
three categories of the control calculation: input processing, control algorithm, or
output processing. It can also be included in the control equipment, specifically in
the final control element.

If the variability in dynamics is significant but cannot be predicted using
correlations, one approach is to detune the feedback controller so that it is stable
for all dynamics encountered. Naturally, this approach will result in a degradation
in performance. Another approach is to modify the tuning of the controller based
on some information of the real-time dynamic behavior of the system. Various
methods are available, and references are provided.

Finally, the limits of the adapting approach should be recognized. First, a great
strength of feedback control is that it does not require a highly accurate model.
Thus, reasonable model errors can be tolerated with little degradation in control
performance. Second, the adaptations require some time for the method to recog-



nize the change in process behavior and introduce the compensation to the tuning
(or other element of the loop). Thus, if the process dynamics are changing with
a frequency near the critical frequency of the feedback control loop, an adaptive
approach will not be able to introduce the compensation quickly enough. This
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TABLE 16.4

Summary of methods to compensate control systems for nonlinearities

Compensation for Additional effects on
Description nonlinearity Example control performance

Measurement Calculation to compensate Square root of orifice Improved accuracy for
for nonlinear flow meter process monitoring
sensor (Figure 12.5)

Final element Final element selected Valve characteristic to
to compensate for account for changes in
process nonlinearity pressure (Figures 16.6

and 16.7)
Cascade control Select secondary set Level-flow cascade Improved response to

point that has linear (Figure 16.11) secondary disturbances
relationship with primary

Detune Determine single set Three-tank mixing Poor performance
of tuning constants process (Table 16.1, can result
for the range of operating Case A tuning)
conditions

Gain schedule Calculate the controller
gain based on real-time
measurement
Multiply feedforward Figure 16.5 Feedforward
and feedback (where compensation for
this leads to proper measured disturbance
gain scheduling)

Controller Calculate tuning based Three-tank mixing
tuning on a process model process [equation

and real-time (16.8)]
measurement

Occasionally Empirically determine Relay method of Undesired variation
retune key model finding critical during (infrequent)

characteristics and conditions (Astrom and retuning
tune controller according Hagglund, 1984)
to preselected
performance criteria

Continuously Empirically determine On-line identification
retune key model

characteristics and tune
controller according to
preselected performance
criteria
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limitation also holds when an infrequent change in process dynamics is large and
abrupt: adaptation may not be able to detect the situation rapidly enough. Finally,
the reader is advised to establish the potential improvement using the first entries
in Table 16.4 before attempting the substantially more complex approaches in later
table entries.
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Adaptive tuning of PID and other feedback control algorithms are presented
at an advanced level in
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Research Triangle Park, NC, 1988.
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QUESTIONS
16.1. Consider the three-tank mixing example process, but with the outlet con

centration of component A changed to 50 percent in all cases. Recalculate
the values in Table 16.1 for the same changes in the flow rate of stream B.
Compare and comment on the similarities and differences.

16.2. Answer each of the following questions, with a full explanation of your
answer.
id) Could closed-loop frequency response, as explained in Section 13.3, be

used to determine when feedback controller tuning should be adapted
for changes in operating conditions?

ib) Review all cascade examples in Section 14.7 and determine whether
each results in a (nearly) linear relationship between the secondary and
primary. Would the single-loop control (primary to valve) be signifi
cantly nonlinear?

ic) Review all of the feedforward-feedback control designs in Section 15.7
and for each, recommend how to combine the feedforward and feed
back signals (add, multiple, divide, other) to provide the best tuning
compensation for the measured disturbances.

id) The discussion and examples in this chapter involved feedback con
trol. Discuss whether there is any advantage to adapting the adjustable
parameters in a feedforward controller. If yes, discuss how this could
be evaluated and the proper values determined.

16.3. Recalculate the tuning in Table 16.1 using the Ziegler-Nichols closed-loop
tuning method. Compare the similarities and differences of the effect of
Fb on the tuning for the two tuning methods. Which tuning would you
recommend using?
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matic deterministic retuning of the feedback control system? If yes, deter
mine the measured variable and the tuning constants as a function of the
measured variable.

16.6. You have been given the task of developing a rule-based adaptive tuning
method for use with a PID controller. Also, the introduction of any per
turbations by the method has been prohibited. Develop a set of rules that
can be applied to normal operating data (with disturbances) to improve the
performance gradually by adjusting the controller tuning constants. Re
member to consider both the controlled and manipulated variables when
evaluating performance.

16.7. In some control designs, the location of the sensor can be changed; one
method for changing the effective sensor location is switching between
sample tap locations that feed an analyzer. In this question we consider
the dynamic system described in Example 5.2, Case 1. The original feed
back PI controller measured Y4 and adjusted the input to the system; the
modified feedback PI controller measures Y3 and adjusts the input to the
system. Calculate the tuning for both PI controllers and decide whether the
controller tuning should be adjusted when the sensor is switched.

16.8. The stirred-tank heat exchanger in Section 16.5 experiences changes in the
feed inlet temperature of 120 to 170°C and in the coolant inlet temperature
of 20 to 30°C. These temperature changes occur independently, and the feed
flow and temperature set point remain constant at their base-case values.
Discuss the need for adapting the feedback PI controller tuning constants
and, if necessary, provide correlations for the valve characteristic and tuning
as appropriate.

16.9. Design feedforward-feedback control for the chemical reactor in Example
15.1 for input disturbances in both feed composition, A2, and feed flow,
Fl. Pay particular attention to how the feedforward and feedback signals
should be combined. Is there a need for adapting the feedback tuning for
disturbances? Can this be achieved in combination with the feedforward
control? Is there a need to adapt the feedforward controller parameters?
Since you do not have fundamental models for this system, answer this
question based on your qualitative understanding of the behavior of the
process equipment.

16.10. The behavior of the heat exchanger in the recycle system in Example 5.3
varies due to fouling. Experience has shown that Gh2 changes within the
range of 0.20 to 0.32 about its nominal value of 0.30. Determine whether
this change is significant. If so, how could deterministic controller adapta
tion be implemented?

16.11. Sometimes process equipment has to be removed from service occasionally
for maintenance. Consider a multiple-tank mixing process that is basically



the mixing tank process in Example 7.2, but modified to have between two 533
and four tanks, depending on the equipment availability. Determine how w»««!^*iH^«M»si
the feedback controller tuning has to be modified for the situations of two, Questions
three, and four tanks in the feedback process. Also, compare the control
performance for these three situations.

16.12. Level control is to be added to the draining tank process in Example 3.6.
The controller adjusts the opening of a valve in the exit pipe at the base
of the tank, and essentially all of the pressure drop in the pipe and valve
occurs across the valve. Determine the valve characteristic that will yield
a linear relationship between the controller output and the level. The inlet
flow varies from 50 to 150 m3/h.

16.13. In some feedback control systems the manipulated variable can be changed,
usually by selecting the position of a switch at the controller output that
directs the signal to one of the possible manipulated variables. For the fol
lowing cases, determine whether the difference in feedback dynamics is
significant enough to require changing the tuning depending on the manip
ulated variable selected for the controller output.
ia) For a distillation column, the controlled variable is the light key in the

distillate, XD, and the two manipulated variables are the reflux flow,
FMr, and the vapor boilup, VMq. For dynamic models, refer to Figure
5.17.

ib) For a single, isothermal CSTR, the controlled variable is the effluent
reactant concentration, CA, and the two manipulated variables are the
inlet concentration, Cao, and the total feed flow rate, F. For dynamic
models, refer to Example 5.5.

ic) For an open-top liquid tank, the controlled variable is the liquid level,
and the two manipulated variables are the valves in the two outlet pipes.
The process is sketched in Figure Q1.9a.

16.14. Question 13.1 describes a process with feedback control and changes in
operating conditions, id) through if). For each change in operating con
ditions, determine whether it is necessary to adapt the feedback controller
tuning, and if so, how the adaptation could be implemented automatically.

16.15. Consider a series of three isothermal CSTRs, each with the physical design
parameters of the process in Example 3.5. The base case operating condi
tions are the same as the example: F = 0.085, Cao = 0.925, and k = 0.50.
The composition of reactant A in the third reactor is controlled by adjust
ing the feed composition, CAo- Determine id) the steady-state operating
conditions for this base case, ib) the linearized model for the system, and
(c) PID feedback tuning for this base case system. Then determine whether
the controller tuning must be adjusted if the feed flow rate changes from
0.085 to 0.20.


