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10.1 a INTRODUCTION
To this point, we have developed a control algorithm (the proportional-integral-
derivative controller) and a method for tuning its adjustable constants. One might
ask, "Isn't this sufficient for designing feedback control systems?" The answer is a
resounding "No!", because we do not have a general method for evaluating the ef
fects of elements in the closed-loop system on dynamic stability and performance.

Through various examples and exercises, we have seen how feedback control
can change the qualitative behavior of a process, introducing oscillations in an
originally overdamped system and potentially causing instability. In fact, we shall
see that the stability limit is what prevents the use of a very high controller gain to
improve the control performance of the controlled variable. Therefore, a thorough
understanding of the stability of dynamic systems is essential, because it provides
important relationships among process dynamics, controller tuning, and achievable
performance. These relationships are used in a variety of ways, such as selecting
controller modes, tuning controllers, and designing processes that are easier to
control.

10.2 B THE CONCEPT OF STABILITY
In vernacular English, the term "unstable" has a negative connotation. Certainly,
no one would want to be described as unstable! This undesirable meaning extends
to products of engineering design; we generally want our plants and control sys
tems to be stable. To ensure consistency, we will use a clear and precise definition of
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stability, termed bounded input-bounded output stability, which can be employed
in the design and analysis of process control systems.

A system is stable if all output variables are bounded when all input variables are
bounded. A system that is not stable is unstable.

A variable is bounded when it does not increase in magnitude to ±00 as time
increases. Typical bounded inputs are step changes and sine waves; an example
of an unbounded input is a ramp function. Naturally, process output variables
do not approach ±00 in a chemical plant, but serious consequences occur when
these variables tend toward ±00 and reach large deviations from their normal
values. For example, liquids overflow their vessels; closed vessels burst from high
pressures; products degrade; and equipment is damaged by excessive temperatures.
Thus, substantial incentives exist for maintaining plant variables, with and without
control, at stable operating conditions.

As a further clarification, a chemical reactor would be stable according to our
definition if a step increase of 1°C in its inlet temperature led to a new steady-state
outlet temperature that was 100°C higher. Thus, systems that are very sensitive can
be stable as long as they attain a steady state after a step change. The methods in
this chapter determine stability strictly as defined here, which is required for good
operation but clearly is not alone sufficient to ensure good control performance.
Other aspects of achieving acceptable control performance will be addressed in
Chapter 13.

Diameter = 3 m
Height = 3 m

FIGURE 10.1
Level process for Examples 10.1 and
10.3.

10.3 □ STABILITY OF LINEAR SYSTEMS—A SIMPLE
EXAMPLE
Since control system stability is the goal of this chapter, the definition will be
reinforced through a process example that shows how the addition of feedback
control changes the dynamic response of a linear process. In the next section, the
analysis is generalized to any linear system.
EXAMPLE 10.1.
The response of the non-self-regulating level process in Figure 10.1 to a step
change in the inlet flow is to be determined for a case with proportional-only control.

The linear models for the process and the controller are

dL
•A "j- = F\n — ^out

Fout = KciSP - L) + (F0M)S
(10.1)

Expressing variables in deviation form, equating the set point and initial steady
state (i.e., V = L-LS = L- SP), and combining into one equation gives

A^ = F!n + KcL' (10.2)

By taking the Laplace transform and rearranging, the transfer function for this



system can be derived as
Lis)
K(s)

\/Kc

& )

(10.3)
s + \

Solution. Since the system is simple, the following analytical solution to the equa
tions can be derived for a step change in the inlet flow, F{a(s) = AFm/s.

AFirL' =
■KP 0-*-'/r) (10.4)

with z = A/(-Kc). As can be seen, the controller gain affects the time constant of
the feedback system. As observed in earlier examples, increasing the magnitude
of the controller gain, which gives negative feedback control (which in this case is
Kc < 0), decreases the time constant as well as reducing the steady-state offset.

Note that for this first-order system the controller gain can be set to a very
large magnitude without causing instability. This conclusion can be demonstrated
by analyzing the expression for the time constant, which would have to change
sign to cause instability. Since the time constant is positive and the analytical
solution has a negative exponent for all gains (Kc < 0), this idealized system is
stable for any negative feedback controller gain. This result is not true for most
processes, as will be demonstrated in later examples.

Recall that this analysis is valid only for the ideal, linear level control system
described in equations (10.1), which has no sensor or final element dynamics and
is perfectly linear. Also, this analysis ensures only that variables do not increase
without bound; it does not ensure that the process variables in the real plant will
remain within acceptable limits. Applying the final value theorem, the ultimate value
of the level after a step change in the inlet flow is

AFin

l i m L = V i m s L i s ) = l i m j { ~ K c ) s = ^ ( 1 0 . 5 )
j - > 0

i-Kc)
s + 1 Kc

Substituting the process data into this expression for a 20 m3/h change in
flow and a controller gain of -10 m3/h/m gives a final level deviation of 2 m, which,
assuming that the level began in the middle of its range, is half a meter above
the top of the tank wall! For this input the plant demonstrates nonlinear behavior
by overflowing and is not modelled accurately by equations (10.1) when overflow
occurs. Clearly, good control performance requires more than stability; however,
stability is one essential component of a well-performing control system.

This example demonstrates that the stability of the level system depends on
the sign of the exponential term in the solution and that the feedback controller
affects the exponential term. In the next section, the relationship of the exponential
term to stability is generalized to address a set of ordinary differential equations
of arbitrary order.

305

Stability Analysis of
Linear and Linearized

Systems

10.4 Q STABILITY ANALYSIS OF LINEAR AND LINEARIZED
SYSTEMS

Essentially all chemical processes are nonlinear. Since no general stability analysis
of nonlinear systems is available, the local stability of the linearized approxima
tion about a steady state is evaluated. The local linear analysis is valid only in



306

CHAPTER 10
Stability Analysis and
Controller Tuning

a very small region (theoretically, a differential region) about the linearization
conditions. We will assume that a differential region exists about the steady-state
operating conditions within which stability can be investigated, and Perlmutter
(1972) gives a thorough justification of the linearized analysis, sometimes referred
to as Liapunov's first method.

Since the control system reduces variability in the controlled variables, the
linear stability analysis is often adequate for making the control design and tuning
decisions. However, we must recognize that the analysis is valid only at a point and
that no rigorous conclusions can be drawn for a finite distance from this point. The
successes of the vast majority of process control strategies designed using linear
methods attest to the validity of the approach, when applied judiciously.

To develop a general stability analysis for linearized systems, the following
nth-order linear dynamic model with a forcing function f(t) is considered.

dnY
+ ai

dn - l
+ ... + anY = f(t) (10.6)dt ' "l dtn~l

Note that we often formulate the model as a set of first-order differential equations,
which can be combined in the form of equation (10.6) by any of several proce
dures, such as taking the Laplace transform of the original models and combining
algebraically.

The solution to equation (10.6) is composed of two terms: the particular
solution, which depends on the forcing function, and the homogeneous solution,
which is independent of the forcing function (Boyce and Diprima, 1986). The
forcing functions for process control systems are set point changes and disturbances
in process variables such as feed composition, which, since they are bounded,
cannot cause instability in an otherwise stable system. Thus, we conclude that
the particular solution of a stable system with bounded inputs must be stable.
Therefore, the stability analysis concentrates on the homogeneous solution, which
determines whether the system is stable, with or without forcing, as long as the
inputs are bounded (Willems, 1970).

The Laplace transform of the homogeneous part of equation (10.6), with all
initial conditions equal to zero, is

,« - i(sn + an-is"-1 + • • • + a{s + a0)Y(s) = 0 (10.7)
As demonstrated in Chapter 4, the solution to equation (10.7) is of the form

Yit) = Axeait +... + (Bx + B2t + -. •)«"''
+ • • • + [Ci cos (a)t) + C2 sin (cot)̂ 0"1 H

(10.8)

where a,- = the ith real distinct root of the characteristic polynomial
cip = repeated real root of the characteristic polynomial
<xq = real part of complex root of the characteristic polynomial

A, B,C = constants depending on the initial conditions
The stability of the linearized system is entirely determined by the values of

the exponents (the a's). When all of the exponents have negative real parts, the
solution cannot increase in an unlimited fashion as time increases. However, if
one or more exponents have positive real parts, variables in the system will be
unbounded as time increases, and the system will be unstable by our definition.
The special case of a zero real part is considered in Example 10.3, where it is shown



that a system with one or more zero real parts is bounded input-bounded output
unstable. Thus, a test for stability involves determining all exponential terms and
can be summarized in the following principle.

• The local stability of a system about a steady-state condition can be determined
from a linearized model.

• The linear approximation of the system is bounded input-bounded output stable
if all exponents have negative real parts and is unstable if any exponential real
part is zero or positive.
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The linear approximation is valid only at the point of linearization. If the process
operation changes significantly, the stability can be determined for several points
with different operating conditions. However, the fact that a system may be stable
for many points does not ensure that it is stable for conditions between these stable
points. This is sometimes referred to as pointwise or local stability determination.
EXAMPLE 10.2.
Determine the stability of the variable T'(t) from the following model.

d 2 T ' d T '——— 1.23—— -1.387" = 0
d t 2 d t (10.9)

The exponential terms can be evaluated according to the following procedure.

is2-\.23s-\3S)T'is) = 0
s2- 1.23*-1.38 = 0

s = -0.71 s = 1.94-*—unstable!
T'it) = A]e-°lu +A2eU94'

(10.10)

It is clear that T'it) is locally unstable about the steady state, because one
of the exponential terms has a real part greater than zero. Insight into the cause
of instability in a process without feedback control is given in Appendix C, where
a chemical reactor is analyzed. (The numerical values for this example are from
Case II in Appendix C, Table C.1.)

' j f e f r a a t o M ^ ^

EXAMPLE 10.3.
The stability of the level process without control iKc = 0) shown in Figure 10.1 is to
be determined. The vessel size and steady-state flow are the same as in Example
10.1. A material balance on the vessel results in the following model:

at Foax(t) (10.11)

The model can be written in deviation variables and in transfer function form
for the case with the outlet flow constant:

. dL'it)
dt

Lis)
F-ds)

= KSf)

Ts

(10.12)

(10.13)

F

To"

'A0 i ^ A
do

T . T' a n ' o o u t
E.
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FIGURE 10.2

Response of the level in Example 103 to
a sine flow disturbance.
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FIGURE 10.3

Response of the level in Example 103 to
a step flow disturbance.

The solution to this equation has a real part of the exponential equal to zero. We
will assume that the process is initially at steady state and investigate the behavior
of the level for two different input flows. First, assume that the flow in varies around
its steady-state value according to a sine, M sin (cot), and the system is initially at
steady state. The analytical solution for the level is as follows, and the dynamic
behavior is shown in Figure 10.2 with A = 7.1 m2, M = 2 m3/mm, and co = 1
rad/min.

M
L'(t) = — [1 - cos (a)t)] = 0.282(1 - cos(O)Aco (10.14)

For this bounded input function, the output of the linearized system is bounded;
therefore, the system is stable in this case. The second case involves a step
function in the inlet flow, which increases by 2 m3/h at time = 0. The analytical
solution for the level subject to a step change of magnitude M from an initial
steady state is as follows, and the dynamic behavior is shown in Figure 10.3.

M
L'(t) = —t= 0.282/A (10.15)

For this bounded input, the output of the linearized model is unbounded (although
the true nonlinear level is bounded because the maximum level is reached and
the liquid overflows). Thus, the result of the stability analysis indicates a serious
deficiency in the level process behavior without control, which should be modified
through feedback.

The difference between the behavior of the levels in these two cases is due
to the nature of the forcing functions. The sine variation in deviation variables
has a zero integral over any multiple of its period; thus, the level increases and
decreases but does not accumulate. The step forcing function has a nonzero
integral that increases with time, and the level, which integrates the difference
between input and output, increases monotonically toward infinity. Since we are
interested in general statements on stability that are valid for all bounded inputs,
we shall consider a system with a zero real part in its exponential to be unstable,
because it is unstable for some bounded input functions.

Local stability analysis using linearized models determines stability at the steady
state; no rigorous information about behavior a finite deviation from the steady state
is obtained.

10.5 u STABILITY ANALYSIS OF CONTROL SYSTEMS:
PRINCIPLES

Again, the local stability of a system will be evaluated by analyzing the linearized
model. The analysis method for linear systems can be tailored to feedback control
systems by considering the models in transfer function form. The resulting methods
will be useful in (1) determining the stability of control designs, (2) selecting tuning
constant values, and (3) gaining insight into how process characteristics influence
tuning constants and control performance. We begin by considering a general



transfer function for a linear control system in Figure 10.4.
CV(s) Gp(s)Gds)Gc(s)
SPis) \+Gp(s)Gds)Gc(s)Gs(s)
C V i s ) G d i s ) (10.16)

Dis) l+Gpis)Gds)Gds)Gsis)
For the present, we will consider only the disturbance transfer function and

will assume that the transfer function can be expressed as a polynomial in s as
follows:

(1 + Gpis)Gds)Gcis)Gds)) CVis) = Gdis)Dis) (10.17)
(sn + alSn~l + a2s"-2 + • • •) CV(j) = (s - ^)(s - fa) • • • (s - pm)D(s)

The right-hand side (the numerator of the original transfer function) represents the
forcing function, which is always bounded because physical input variables cannot
take unbounded values, and we assume that the disturbance transfer function,
Gd(s), is stable.

The essential information on stability is in the left-hand side of equation (10.17),
called the characteristic polynomial, which is the denominator of the closed-loop
transfer function. In the system being considered, Figure 104, the characteristic
polynomial is 1 + Gp(s)Gds)Gc(s)Gs(s). Setting the characteristic polynomial to
zero produces the characteristic equation.

Before continuing, it is important to note that either transfer function in equa
tion (10.16) could be considered, because the characteristic equations of both are
identical. Thus, the stability analyses for set point changes and for disturbances
yield the same results. Examination of the characteristic equation demonstrates

Dis) Gdis)

SPis) ^*0 Eis)

n_
Gds)

MWis)
GJs)

CVmis)

Transfer Functions
Gcis) = Controller
Gvis) = Transmission, transducer, and valve
Gpis) = Process
Gsis) = Sensor, transducer, and transmission
Gdis) = Disturbance

G„is) <♦>
CVis)

Gsis)

Variables
CV(s) = Controlled variable
CVm(s) = Measured value of controlled variable
Dis) = Disturbance
MV(.s) = Manipulated variable
SPis) = Set point

FIGURE 10.4

Block diagram of a feedback control system.
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that the equation contains all elements in the feedback control loop: process, sen
sors, transmission, final elements, and controller. As we would expect, all of these
terms affect stability. The disturbances and set point changes are not in the char
acteristic equation, because they affect the input forcing; therefore, they do not
affect stability. Naturally, the numerator terms affect the dynamic responses and
control performance and must be considered in the control performance analysis,
although not in this part, which establishes stability.

Continuing the stability analysis, the solution to the homogeneous solution
is evaluated to determine stability. For the transfer function, the exponents can
be determined by the solution of the following equation resulting from equation
(10.17):

,«-iis" +axsn-'+a2sn-z + •••) = 0 (10.18)
As before, if any solution of equation (10.18) has a real part greater than or equal
to zero, the linearized system is unstable, because the controlled variable increases
without limit as time increases. The stability test is summarized as follows:

A linearized closed-loop control system is locally stable at the steady-state point if
all roots of the characteristic equation have negative real parts. If one or more roots
with positive or zero real parts exist, the system is locally unstable.

Recall that the roots of the characteristic equation are also referred to as the
poles of the closed-loop transfer function, e.g., Gdis)/[\+Gpis)Gds)Gcis)Gsis)].
This approach to determining stability is applied to two examples to demonstrate
typical results.
EXAMPLE 10.4.
The stability of the series chemical reactors shown in Figure 10.5 is to be deter
mined. The reactors are well mixed and isothermal, and the reaction is first-order in
component A. The outlet concentration of reactant from the second reactor is con
trolled with a PI feedback algorithm that manipulates the flow of the reactant, which
is very much smaller than the flow of the solvent. The sensor and final element are
assumed fast, and process data is as follows.

Process.

V = 5m3 Fs =5m3/min >> pA

Solvent -ao

do
db ©

Reactant
FIGURE 10.5

Series chemical reactors analyzed in Example 10.4.



PI Controller.

vs = 50% open
CAo = 20 mole/m3 k = 1 min-1

CAOis)/vis) = Kv = 0.40 (mole/m3)/(% open)

Kc = 15(% open)/(mole/m3)
7/ = 1.0 min

Formulation. The process model structure for this system is the same as for
Example 3.3, but the data is different and the valve gain is included. The transfer
functions for the process and controller are

GPis) =
Kr

izs + \)izs + \)

Gds)
- * ( ■ ♦ * )

(10.19)

311

Stability Analysis of
Control Systems:

Principles

with

\F + VKJ

10 mole/m3
%

= 0.50 min

The individual transfer functions can be combined to give the closed-loop
transfer function for a set point change, which includes the characteristic equation.

CV(j) Gpis)Gds)Gcis) 15(1+fi)(o:
0.10
55 + l)2

SPis) 1 + Gpis)Gds)Gcis)Gsis)

Characteristic equation.
» ( ■ ♦ * ) « * ? )

(10.20)
1 +

- ♦ " ( ' ♦ a w i w )

0 = 0.25s3+ l.0s2 +2.5s+ \.5

(10.21)

The solution to this cubic equation gives the exponents in the time-domain solution.
These values are

a,,2 = -1.60 ± 2.21 j a3 = -0.81

Since all roots have negative real parts, this system is stable. Remember, we still do
not know how well the closed-loop control system performs, although the complex
poles indicate that the system is underdamped and the integral mode indicates
that the controlled variable will return to its set point for a steplike disturbance.

EXAMPLE 10.5.
The stability of the three-tank mixing process in Example 7.2 is to be evaluated
under feedback control with a proportional-only controller.

lA0

f e
VA1

f r "

1
hdb* VA2

cfe
VA3

0
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FIGURE 10.6

Root locus plot for Example 10.5 for controller gain values of (a) 0, ib) 50,
ic) 100, id) 150, ie) 200, and if) 250.

Assuming that the sensor is fast, Gsis) = 1, the closed-loop transfer function
is

1
C V j s ) = G d s )
Dis) 1 + GPis)Gds)Gcis)Gsis)

i5s + l)3
1 + Kc- 0.039

i5s + l)3
Characteristic equation.

125s3 + 15s2 + \5s + (1 + 0.039 Kc) = 0

(10.22)

(10.23)
The solutions to the characteristic equation determine whether the system is

stable or unstable. Solutions have been determined for several values of the con
troller gain (with the proper sign for negative feedback control), and the results
are plotted in Figure 10.6. Since the characteristic equation is cubic, three solu
tions exist. The system without control, Kc = 0, is stable, because all roots (i.e.,
exponential terms) have the same negative real value (-0.2).

As the controller gain is increased from 0 to 250 in increments of 50, the poles
approach, and then cross, the imaginary axis. This path can be interpreted as the
solution becoming more oscillatory, due to the increasing size of the imaginary
parts, and finally becoming unstable, since the exponents have zero and then
positive real parts. Based on this analysis, the three-tank mixing process is found
to be (barely) stable (and periodic) for Kc < 200 and unstable for Kc > 250; further
study shows that the stability limit is about Kc = 208. The control performance
would be clearly unacceptable when the system is unstable, but again, we do not
yet know for what range of controller gain the control performance is acceptable.

The results of Example 10.5 can be generalized to establish relationships be
tween locations of roots of the characteristic equation (poles of the closed-loop
transfer function). In addition, features of dynamic responses can be inferred from
the poles if a constant transfer function numerator is assumed. These generaliza
tions are sketched in Figure 10.7, which shows the nature of the dynamic responses
for various pole locations. Clearly, the numerical values of the poles (or equiva-
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FIGURE 10.7

Examples of the relationship between the locations of the exponential terms and the
dynamic behavior.

lently, their location in the complex plane) are very important for the dynamic
response of a closed-loop system.

The method of plotting the roots of the characteristic equation as a function of
the controller tuning constant(s) is termed root locus analysis and has been used
for decades. Note that a root-solving computer program is required to facilitate the
construction of the plots. We will use another stability analysis method in further
studies, but we directly calculated the poles of the closed-loop transfer function
here because of the excellent visual display of the effect of the tuning constants
on the exponential terms and therefore on stability. In summary, for a linearized
model (which determines local properties):

Application of the general stability analysis method to feedback control systems
demonstrates that the roots of the characteristic equation determine the stability
of the system.
When the characteristic equation is a polynomial, a straightforward manner of
determining the stability is to calculate the roots of the characteristic equation.
If all roots have negative real parts, the system is bounded input-bounded output
stable; if any root has a positive or zero real part, the system is unstable.

10.6 a STABILITY ANALYSIS OF CONTROL SYSTEMS:
THE BODE METHOD
The method presented in the previous section presents the principles of stability
analysis of transfer functions and provides a vivid picture of the effects of controller
tuning on the stability of control systems. However, we would like to have a method
for analyzing control systems that



314

CHAPTER 10
Stability Analysis and
Controller Tuning

1. Involves simple calculations
2. Addresses most processes of interest
3. Gives information on the relative stability of the system (i.e., how much a

parameter must change to change the stability of the system)
4. Yields insight into how various process and controller characteristics affect

tuning and control performance

The most commonly used stability analysis methods are summarized in Table 10.1.
Since many plants in the process industries have dead time, the methods that require
polynomial transfer functions (root locus and Routh) will not be considered further.
Of the two remaining, the Nyquist method is the most general. However, in spite
of a few limitations, the Bode method of stability analysis is selected for emphasis
in this book, because it involves simple calculations and, more importantly in the
age of computers, gives more easily understood insights into the effect of process
and controller elements on the stability of closed-loop systems.

The basis of the Bode method is first explained with reference to the system in
Figure 10.8a and b; then, a simple calculation procedure is presented with several
worked examples. Suppose that a sine wave is introduced into the set point with
the loop maintained open as in Figure 10.8a. Because the system is linear, all
variables oscillate in a sinusoidal manner. After some time, the system attains a
"steady state," a standing wave in which the amplitudes do not change. The sine
frequency can be selected so that the output signal, CV(f), lags the input signal,
SP(0, by 180°. Note that the relative amplitudes of the various signals in Figure
10.8a would normally be different but are shown to be equal here because the
process and controller transfer functions have not yet been specified.

After steady state has been attained, the set point is changed to a constant
value and the loop is closed, as shown in Figure 10.8&. Since this is a closed-loop
system, the sine affects the process output, which is fed back via the error signal to
the process input. For the frequency selected with a phase difference of 180°, the
returning signal reinforces the previous error signal because of the negative sign
of the comparator.

TABLE 10.1

Summary of stability analysis methods
Method Plant model Stability results Results display

Root locus (Franklin Polynomial in s Relative Graphical
et al., 1991)
Routh (Willems, Polynomial in s Yes or no Tabular
1970)
Bode (1)Open loop-stable Relative Graphical

(2) Monotonic decreasing
amplitude ratio (AR) and
phase angle (0) as frequency
increases

Nyquist (Dorf, 1986) Linear Relative
f e « « I d « A ^

Graphical
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Bode stability analysis: (a) behavior of open-loop system with sine forcing;
ib) behavior of system after the forcing is stopped and the loop is closed.

A key factor that determines the behavior of this closed-loop system is the
amplification as the sine wave travels around the control loop once. If the signal
decreases in magnitude every pass, it will ultimately reduce to zero, and the system
is stable. If the signal increases in amplitude every pass, the wave will grow without
limit and the system is unstable. This analysis leads to the Bode stability criterion.
Two important factors need to be emphasized. First, the analysis is performed at the
frequency at which the feedback signal lags the input signal by 180°; this is termed
the critical or crossover frequency. Naturally, the critical frequency depends on all
of the dynamic elements in the closed-loop system. Second, for the amplitude of the
wave to increase, the gain of the elements in the loop must be greater than 1. This
gain depends on the amplitude ratios of the process, instrument, and controller
elements in the loop at the critical frequency. The result is the Bode stability
criterion for linear systems, which gives local results for a nonlinear system.

Stability Analysis of
Control Systems: The

Bode Method

The Bode stability criterion states that a closed-loop linear system is stable when its
amplitude ratio is less than 1 at its critical frequency. The system is unstable if its
amplitude ratio is greater than 1 at its critical frequency.

From this analysis, it is clear that a system with an amplitude ratio of exactly
1.0 would be at the stability limit, with a slight increase or decrease resulting in
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instability or stability, respectively. Because of small inaccuracies in modelling
and nonlinearities in processes, no real process can be maintained at its stability
limit.

Note that the Bode method considers all elements in the feedback loop: pro
cess, sensors, transmission, controller, and final element. Naturally, some of these
may contribute negligible dynamics and can be lumped into a smaller number of
transfer functions. By convention, the transfer function used in the Bode analy
sis is termed the open-loop transfer function and is represented by the symbol
Gods)-

G0L(s) = Gp(s)Gds)Gc(s)Gds) (10.24)

Before the Bode method is discussed further, limitations are pointed out. The
Bode method cannot be applied to a few systems in which Gods) has particular
features:

1. Unstable without control
2. Nonmonotonic phase angles or amplitude ratios at frequencies higher than the

first crossing of —180°

The Bode method is not appropriate for these systems because

1. The experiment in Figure 10.8 cannot be performed for an unstable process.
2. Nonmonotonic behavior in the Bode diagram of Gods) could lead to a higher

harmonic of the critical frequency for which the magnitude is greater than 1.0.

For processes with these features, the Nyquist stability analysis is recommended
(Dorf, 1986).

The amplitude ratio can be determined through analytical relationships intro
duced in Chapter 4. The important relationships are summarized below for a general
transfer function; these were applied to process transfer functions in Chapter 4 and
will be extended here to Gods)- As a brief summary of results in Chapter 4,

1. The frequency response relates the long-time output response to input sine
forcing of the system.

2. The frequency response of a linear system can be easily calculated from any
stable transfer function, G(s), as G(jco).

3. The amplitude ratio is the ratio of the output over the input sine magnitudes
and can be calculated as

AR = \G(jco)\ = V(Re [G(jco)])2 + (Im [Gijco)])2 (10.25)

4. The phase angle gives the amount that the output sine lags the input sine and
can be calculated as

, / r ( . . t - i / I m [ G ( » ] \
(10.26)

Another important simplification provides a way for the frequency response
of a series of transfer functions to be calculated from the individual frequency



responses. First, each individual transfer function can be represented in polar form
by

G i i j a > ) = \ G l i j o > ) \ e - * ' J ( 1 0 . 2 7 )
The series transfer function can then be expressed as
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Gij(o) = Y[ Giijco) = ( Y\ \Giijco)\ ) exp ( -£>/./ ) = ARe'** (10.28)
1=1 1=1

w i t h A R = Y \ \ G d j < o ) \ * = X >

These are especially useful relationships, because the individual transfer functions
used in the Bode method, Gods), are often in series as shown in Figure 10.4 and
equation (10.24).

In addition to the simplifications in the calculation, the frequency response of
a transfer function can be presented in a clear graphical manner using Bode plots.
These plots, introduced in Chapter 4, present the amplitude ratio and the phase
angle as a function of the frequency. The log scales are used to cover larger ranges
of variable values with reasonable accuracy. The reason for the inclusion of the
phase angle plot was not obvious in Chapter 4 but becomes apparent when stability
of feedback systems is evaluated, as the next few examples demonstrate.

The frequency response calculations used in the remainder of this chapter
involve algebraic manipulations to solve for the amplitude ratio, \GodJ<*>)\> and
phase angle, LGodJo)* fr°m me transfer function by setting s = jco. Alterna
tively, these terms can be evaluated directly using basic computer functions; for
example, the following pseudo-code can be used in MATLAB™ to evaluate the
amplitude ratio and phase angle of a first-order-with-dead-time transfer function
at a specified frequency:

Kp = 2.0;
theta = 5.0;
taup = 5.0;
j = s q r t ( - l ) ;
omega = 0.20?
Gp = Kp*exp(-theta*omega*j)/(taup*omega*j + 1)
AR = abs(Gp);
Phase = angle(Gp);
Phase = phase * 180/pi

% define the complex variable
% define the value of f requency in rad/ t ime
% evaluate Gp(jw), a complex variable
% absolute value gives the magnitude
% angle gives phase angle in rad
% to obta in degrees, mul t ip ly by 180/pi

Expressions are provided in Table 10.2 for the amplitude ratio and phase angle of
some simple, commonly used transfer functions. Computer calculations demon
strated above can be used for any transfer functions, including those too complex
to reduce algebraically.

Therefore, the reader is advised to concentrate on the principles introduced and
applications demonstrated in this chapter, with the assurance that no practical limit
exists to easily calculating the information needed for stability analysis.
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TABLE 10.2

Summary of amplitude ratios and phase angles for
common transfer functions [co is in rad/time, n is a positive
integer)
Transfer function Amplitude ratio* Phase angle (°)*

K
K

zs + \

K
ZSS2 + 2zi;S + 1

K
izs + 1)"
„-0s

As

Kc
( ' ♦ £ )

Kd\ + zds)

K
K

y/z20)2 + 1

0

tan-1 (-coz)

K - l / -2zcol- \
\ \ -z2co2)y/i\ - z2co2)2 + (2zco$)2

K \ , ) n t a n " 1 i - c o z )
VVrW + l/

„ /360\1

J_
Aco

-90

Kc.\ + co2T2 tan- l

[coT,)

Kcy/\ + iTdCti)2 tan-' iTdco)

Kc(l + ± + TdS) K.Jl + fa-^)1 --(^-Jj;)
•For the gain > 0.

U
do

f
FIGURE 10.9

Mixing process analyzed in Example
10.6.

EXAMPLE 10.6.
The single-tank mixing process with proportional control shown in Figure 10.9 is
considered. This process is the same as the three-tank mixer in Example 7.2 with
the last two tanks removed. The process transfer function, which includes an ideal
sensor and fast final element dynamics, is given as

Gds) = Kc Gp(s)Gvis)Gsis) =
0.039
5s + 1 (10.29)

with time in minutes. Note that the process is stable without control, since it has
one pole at (-0.2,0) in the real-imaginary plane, so that it satisfies the criteria in
Table 10.1 for the Bode method. The stability is to be determined by the Bode
method.

First, Gods) must be determined. This is the product of the valve, process,
sensor, and controller transfer functions; G0ds) with proportional-only control can
be written as

Gods) = 0.039ffc
5* + l (10.30)
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FIGURE 10.10
Bode plot for the Godj<*>) in Example 10.6, with Kc = 1.0.
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The magnitude and phase angle of Gods) can be calculated from G0dj<o)-

AR = |Gol(»I

« ( i r y ( ^ £ )
(0.039/i:c)
J\+25co2

* = LGodio) = L (0.059Kc) + L

. - i

(10.31)

1
55 + 1

= tan"' i-5co)

These expressions are presented in Bode plots in Figure 10.10 for Kc = 1.
Since the phase angle for this first-order system does not decrease below -90°
for any controller gain, the phase angle never reaches -180°, and the feedback
signal cannot reinforce oscillations in the control loop. As a result, this idealized
control system is stable for all negative feedback proportional-only controller gains
(Kc > 0 in this case). As the next example illustrates, nearly every realistic system
can be made unstable with improper feedback control.
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EXAMPLE 10.7.
The mixing process and proportional controller in Figure 10.9 and Example 10.6
are considered here, with the modification that the valve and sensor dynamics are
more realistically modelled according to the following first-order transfer functions
with short time constants:

Gds) = Kc GPis) =
0.039
5s+ 1 Gds) =

1
0.033s + 1 Gds) =

1
0.25s + 1

(10.32)

Equations (10.28) can be used to determine the amplitude ratio and phase
angle for this series system, and the results are

Gods) = (0.039tfc)

\G0djco)\ =

1 1 1
1 + 5s 1 + 0.25s 1 + 0.033s

0 . 0 3 9 / T , 1 1
VI + 25co2 VI + 0.0625w2 VI + 0.001 lo>2 0

t-GodJu) = tan-1 i-5co) + tan-1 (-0.25a;) + tan-1 (-0.033a>) + L (0.059 tfc)

(10.33)
The amplitude ratio and phase angle are plotted in Figure 10.11 for a controller

gain of 1.0. Because of the added dynamic elements in Gods), the phase angle

10"6
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FIGURE 10.11
Bode plot of Godjco) for the system in Example 10.7 with Kc = 1.0.
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exceeds -180°. At the critical frequency (11.6 rad/min), the following values for
the amplitude ratio are determined:

Kc = \.0 |G0L(M)I = 0.0002 < 1.0 Stable
Kc = 500 \GodJ<oc)\ =0.10 < 1.0 Stable
Kc = 6000 \G0dJ(oc)\ = 1.2 > 1.0 Unstable

As can be seen by applying the Bode stability criterion, the system is stable
for controller gain values of 1.0 and 500 because the amplitude ratios at the critical
frequencies are less than 1.0, and the system is unstable for a controller gain of
6000, which has an amplitude ratio greater than 1.0 at the critical frequency.
s©«js;fSHiwaŝ ^

Two important lessons have been learned from the last examples. The first
lesson is that in theory, a stable transfer function Gods) that is first- or second-
order cannot be made unstable with proportional-only feedback control, because
its phase angle is never less than -180°. The second lesson demonstrates that all
real systems have additional dynamic elements in the control loop (e.g., valve,
sensor, transmission) that contribute additional phase lag and result in a phase
angle less than -180°, albeit at a very high frequency.
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Thus, essentially all real process control systems can be made unstable simply by
increasing the magnitude of the feedback controller gain.

EXAMPLE 10.8.
The chemical reactor process and control system in Example 10.4 are changed
slightly. In this case, a transportation delay of 1 min exists between the mixing point
and the first stirred-tank reactor, with no reaction in the transport delay. Therefore,
the process transfer function is modified to include the dead time. A proportional-
integral controller is proposed to control this process with the same tuning as
Example 10.4; ATC = 15 and 7) = 1. Determine whether this system is stable.

The Bode method can be applied to this example with the new aspect that
dead time exists in the process. The first task is to determine Gods)- As explained
above, this transfer function contains all elements in the feedback loop; therefore,
Gods) is

Gods)
. , . ( , ♦ ; )

0.1 Oer
(0.50s + l)2 (10.34)

Solvent ■ 'A0

TL ~Uh

h do
do 1$

Reactant

The amplitude ratio and phase angle for each element can be combined to
give the amplitude ratio and phase angle of G0Lija>).

0.10
i0.50jco+\)2I V W l

- m
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FIGURE 10.12
Bode plot of God]®) for Example 10.8.

101

* = z^+z(1 + i.) + /(_±12_) + Le- J O )

360= tan_1(-l/fy) + 2tan-1 i-0.5co) - l.Oco—
2tt

These terms are plotted in Figure 10.12. Since the amplitude ratio is greater than 1
(1.32) at the critical frequency of 1.31 rad/min, the system is unstable. Note that the
dead time introduced additional phase lag in the feedback system and caused the
system to become unstable. This result agrees with our qualitative understanding
that processes with dead time are more difficult to control via feedback. Stable
control could be obtained by adjusting the tuning constant values.

The preceding examples have demonstrated interesting results. To expand on
these experiences, it would be valuable to understand the contributions of com
monly occurring process models and controller modes to the stability of a feedback
control system. Also, it would be useful, when performing calculations, to have
analytical and sample graphical frequency responses for these common elements.
Both of these goals are satisfied by the analytical expressions and Bode plots pre
sented to complete this section. The plots for the key process components—gain,
first-order, second-order, pure integrator, and dead time—are presented in Figure
10.13a through e; these were developed from the transfer functions and expressions
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FIGURE 10.13
Generalized Bode plots: (a) gain; ib) first-order system.
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FIGURE 10.13 Cont.

Generalized Bode plots: (c) second-order system (the parameter is the
damping coefficient §); (d) dead time.
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Generalized Bode plots: ie) integrator; if) proportional-integral controller.
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Generalized Bode plots: ig) proportional-derivative controller;
ih) proportional-integral-derivative controller for which the derivatve time is
one-tenth of the integral time.



for amplitude ratio and phase angle in Table 10.2. The plots for the PI, PD, and
PID controllers are presented in Figure 10.13/ through h and were also developed
from the analytical expressions in Table 10.2. Note that these plots are presented
in dimensionless parameters, so that they can be used to determine the frequency
responses quickly for a system conforming to one of the general models. The tables
and generalized figures are valid for the frequency responses of transfer functions
with positive gains. When the gain is negative, (1) the amplitude ratio should be
determined using the absolute value of the gain, |AT|, and (2) the phase angle is
smaller by 180° iorn radians), i.e., (LG(jco))K<o = (LG(jco))k>q - 180.

As an example of the preparation of the dimensionless plots, the expressions
for the amplitude ratio and phase angle for a first-order system are given in Table
10.2 and repeated here:

A R - - * '
y/c02X2 + 1

0 = tan-1 (—cox)

AR
~K~n

1
y/c02X2 + 1 (10.36)

Noting that the two variables co and x always appear as a product, they can
be combined into one variable, cox, and the Bode plots expressed as a function of
this single variable. Also, the amplitude ratio can be normalized by dividing by
the process gain Kp. Similar manipulations are possible for the transfer functions
of the other building blocks.

EXAMPLE 10.9.
Determine the amplitude ratio and phase angle of the following transfer function
at a frequency of 0.40 rad/min:

0.039
G(s) = (l+5s)2 (10.37)

The first step is to calculate the parameters in the generalized Figure 10.13c.
The results can be calculated as follows:

, 1 0T2 = 25 t = 5.0 £ = — = 1.02r (10.38)

From the generalized charts, AR/KP = 0.2; AR = 0.2(0.039) = 0.0078; and <p =
-125. The same answers can be determined by using the equations in Table 10.2.
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The Bode plot of any God jco) for a system consisting of a series of common
elements can be easily prepared by using the expressions for these individual ele
ments and equation (10.28). The usefulness of the general plots is not primarily in
simplifying the calculations, because the calculations are not difficult by hand and
computer programs are available to automate the calculations and plot the results.
The real importance is in highlighting the contributions of various components
to the stability of a feedback system. For example, note that an element in the
feedback path that has a large phase angle contributes to lowering the critical fre
quency. Since most process models have amplitudes that decrease with increasing
frequency, a lower critical frequency yields a higher amplitude ratio for Godj^)-
Since a lower amplitude ratio is desired to maintain the amplitude ratio below 1.0
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for stability, elements with the larger phase angle tend to destabilize a feedback
control system. Some of the key features of the most important transfer functions
are summarized in Table 10.3. The readers are encouraged to compare the entries
in the table with the Bode figures so that they understand the major contributions
of each transfer function.

Before we move on to controller tuning, a word of caution regarding terminol
ogy is provided. The common term for the expression in equation (10.24), Gods),
is the open-loop transfer function; hence, the subscript OL. The term refers to Fig
ure 10.8, where the feedback loop was temporarily opened. Unfortunately, the term
open-loop is also used for the response of a process to an input change without con
trol. In this second case, the transfer function being considered is either the process
transfer function Gp(s) or the disturbance transfer function Gd(s), depending on
which input-output relationship is being considered. To avoid misinterpretation,
it is best to relate the subscript OL to Figure 10.8 and to recognize that Gods)
contains all elements in the feedback loop, including the controller. The conven
tional terminology, although not as clear as desired, is used in this book to prevent
confusion when consulting other references.

TABLE 10.3

Summary of key features of process transfer function frequency responses
Transfer funct ion Amplitude ratio, AR Phase angle, <f> Key feature

Gain, K Constant 0
First-order, Monotonically 0 to -90° At corner frequency
l/(w + l) decreases with (co = 1/r), AR = 0.707,

increasing frequency, and cf> = -45°
limiting slope = -1

Second-order, (1) Shape depends on 0 to-180° (1) ARisnot
l/(z2s2 + 2$zs + \) the damping ratio, can monotonic for small

be nonmonotonic damping coefficients
(2) Limiting slope = -2 (2) Key frequency is

co = 1/r
nth order from n Monotonically 0 to (-90)n°
first order in series, decreases with
\/(zs + \)n increasing frequency,

limiting slope = -n
Dead time, 1.0 Oto -oo Ata>= 1/0, <b = -57.3
g-0s and decreases rapidly

as co increases
Integrator, Straight line with a -90° At co = 1/A, AR = 1
\/As slope of -1 from -co

to +oo through (co = 1,
AR = 1)

Notes:
1. All slopes refer to the Bode diagram (A log(AR)/A log(eo)).
2. The phase angles for all transfer functions in this table decrease monotonically as frequency increases.
3. Phase angle values for the case with positive gain.



In summary, Bode stability analysis provides a method for determining the
stability of most feedback control systems that include dead time. The calcula
tions are relatively simple by hand when Gods) involves a series of individual
transfer functions, and a computer can be programmed to perform the calculations
automatically. In addition to providing a quantitative test, the Bode analysis yields
insight into the effects on stability of various elements in the feedback loop.
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10.7 □ CONTROLLER TUNING BASED ON STABILITY:
ZIEGLER-NICHOLS CLOSED-LOOP
The Bode stability analysis provides a way to determine whether a process and
feedback controller, with all elements completely specified, is stable. It is possible
to alter the procedure slightly to determine, for a given process, the value of the
gain for a proportional-only controller that results in a desired amplitude ratio for
Godj(*>) at its critical frequency. In particular, it is straightforward to determine
the controller gain that would result in the system being on the margin just between
stable and unstable behavior. Note that the proportional-only controller affects the
amplitude ratio but not the phase angle, thus making the calculation easier.

The importance of this approach is that the results of the calculation (the con
troller ultimate gain and critical frequency) can be used with tuning rules presented
in this section to determine initial tuning for P, PI, and PID controllers. This tuning
method is an alternative to the method presented in the previous chapter. While
the tuning rules do not generally give as good performance as the Ciancone corre
lations for simple first-order-with-dead-time processes, the method in this section
has two advantages:

1. It can be applied to processes that are not well modelled by first-order-with-
dead-time models.

2. It provides considerable insight into the effects of all loop elements (process,
instrumentation, and control algorithm) on stability and proper tuning constant
values.

As with most tuning methods, the starting point is a process model that can be
determined by fundamental modelling or by empirical model identification. The
method then follows four steps.

1. Plot the amplitude ratio and the phase angle in the form of a Bode plot for
Gods)- At this step, the controller is a proportional-only algorithm with the
gain Kc set to 1.0.

2. Determine the critical frequency coc and the amplitude ratio at the critical
frequency, \G0dJo)c)\.

3. Calculate the value of the controller gain for a proportional-only controller
that would result in the feedback system being at the stability margin. Since the
stability margin is characterized by an amplitude ratio of 1.0 for GodJ<*>c)>
and Kc does not influence the critical frequency, the controller gain at the
stability limit can be determined by first calculating the critical frequency and
then calculating the controller gain.

ZGol(M) = LGpijcoc)GdJ(Oc)GsiJcoc) = -180°

\GodJo>c)\ = Ku \GpijcOc)GdJo)c)Gsijcoc)\ = 1.0
(10.39)
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TABLE 10.4
Ziegler-Nichols closed-loop tuning
correlations
Controller Ke T,

P-only Ku/2 —
PI KJ2.2 /y i .2
PID K J l . l P„/2.0

Td

PM/8

Ultimate gain: Ku =

Ultimate period: Pu = —
coc

Gpijcoc)GdJ(oc)Gsijcoc)\
2n (10.40)

Ku, termed the ultimate gain, is the controller gain that brings the system to
the margin of stability at the critical frequency. Pu, termed the ultimate period,
is the period of oscillation of the system at the margin of stability. Note that
Ku has the units of the inverse of the process gain iKpKvKs)~x and that Pu
has the units of time.

4. Calculate the controller tuning constant values according to the Ziegler-
Nichols closed-loop tuning correlations given in Table 10.4 (Ziegler and
Nichols, 1942). The description "closed-loop" indicates that the analysis is
based on the stability of the closed-loop feedback system, GolCO- These
correlations have been developed to provide acceptable control performance
(they selected a 1:4 decay ratio) with reasonably aggressive feedback action;
they believed that this also maintains the system a safe margin from instability.

VA0

f e
VA1

& " r̂ *A2

i*rt

EXAMPLE 10.10.
Calculate controller tuning constants for the three-tank mixing process in Example
7.2 by using the Ziegler-Nichols closed-loop method.

The transfer function for this process has already been developed, Gp(s) =
0.039/(5s+1)3 and the Bode plot of the transfer function with (Kc = 1) is presented
in Figure 10.14 based on

« - f ' ( ^ ),(5s + l)3

£GOLijco) = 3 tan-1 (—5co)

\G0dJco)\= 0.039 W1+5VJ
If the plot were not available, the calculations would have to be performed by

hand. They involve a trial-and-error procedure to determine the critical frequency
and are often arranged in a table similar to the results in the following figure.
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FIGURE 10.14

Bode plote of Godjco) for Example 10.10 with Kc = 1.
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Frequency
a) (rad/min)

Phase angle
0(°)

Amplitude ratio
AR

0.10 -79.7 0.0279
0.20 -135 0.0138
0.35 -180.8 (critical frequency) 0.0048
0 . 4 0 - 1 9 0 . 3 0 . 0 0 3 5

From the results in the table, the ultimate gain and period can be determined
to be Pu = 2jt/coc = 17.9 min and Ku = 1/ARC = 208. The tuning constants for P,
PI, and PID controllers according to the Ziegler-Nichols correlations are

Control ler Kc (% open/%A) T, (min) Td (min)

P-only
PI
PID

104
94.5

122.4
14.9
8.95 2.2
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200

FIGURE 10.15

Dynamic response of three-tank mixing control system in Example 10.10
with Ziegler-Nichols tuning.

A sample of the transient response for a step change of +0.8%A in the feed
concentration under PI control is given in Figure 10.15. As can be seen, the control
performance is quite oscillatory, resulting in large variation in the manipulated vari
able and in a long settling time. For most plant situations, this is too oscillatory, and
control performance for this system similar to Figure 9.6 would be preferred. The
engineer could fine-tune the controller constants using the concepts presented in
Section 9.6.

Solvent- 'AO

fi
do

do 0
Reactant

EXAMPLE 10.11.
Calculate tuning for a PI controller applied to the series chemical reactors in
Example 10.8. Recall that this is a second-order-with-dead-time process with
Gpis) = 0.10e~s/i0.50s + \)2.

The Bode plot for G0dj<o) with Kc = 1 is given in Figure 10.16. Note that
the contribution of the individual elements in Gods) can be determined using the
following relationships for transfer functions in series, equation (10.28):

£G0dj(o) = L
1

+ L-1 + 0.5 jco 1 + 0.5 jco + Le~xiw + HO.XO) + lKc\=x

. - i 360= tan-1 (-0.5a;) + tan-1 (-0.5a;) - co— +0 + 0
2tc
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FIGURE 10.16

Bode plot of Example 10.11 with Kc = 1; for (a) the dead time, ib) one
first-order system, and ic) the entire transfer function Godj<o)/Kp.

\GodJa>)\ =
1

1 + 0.5 jco

1

1
1 + 0.5 jco

7~JW\ |0.10| |^c Li

1
1+0.25a;2 V 1 + 0.25a;2 (1.0)(0.10)(1.0)

The results in Figure 10.16 are presented so that the effects of the individual
process elements are clearly displayed. The dead time and one first-order system
are designated as a and b, respectively. The overall amplitude ratio and phase
angle for G0dj<o) can be determined from the foregoing equations. When the
frequency responses of the individual elements are presented in the Bode plot,
the overall amplitude ratio is the sum of the distances on the plot of the individual
deviations from 1.0, since the amplitude ratio is plotted on a log scale. Also, the
total phase angle is the sum of the distances on the plot of the individual deviations
from zero degrees, since the phase angle is plotted on a linear scale. These rules
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are not particularly important as far as simplifying the calculations, which are eas
ily programmed; however, they help the engineer visualize the effects on stability
of individual elements in the feedback loop. For example, any element that con
tributes a large phase lag itself will cause a large phase lag for Godjco). From this
figure, the critical frequency is 1.73 rad/min and the magnitude at this frequency is
0.057; thus, the controller tuning would be, according to the Ziegler-Nichols tuning
correlations in Table 10.4, Kc = 8.0% open/(mole/m3) and T, = 3.0 min.

Before this section is concluded, two common questions are addressed. First,
the novice often has difficulty in selecting an initial frequency for the trial-and-
error calculation for the critical frequency. Since an exact guess is not required, a
good initial estimate can usually be determined from the relationships in Tables
10.2 and 10.3, along with the plots in Figure 10.13. Basically, the initial frequency
should be taken in the region where the Bode diagrams of the individual elements
change greatly with frequency. Rough initial estimates for the frequency are given
by the following expressions:

coz = 1 (first-order system)
cox = 1 (second-order system)
coO — 1 (dead time)

When these calculations give very different results, use the lowest of the esti
mated frequencies to begin the trial-and-error calculations, which usually converge
quickly.

The second common question regards the required accuracy of the converged
answer. The engineer must always consider the accuracy of the information used
in a calculation when interpreting the results. In Chapter 6, the results of empirical
model fitting were found to have significant errors, usually 10 to 20 percent in all
parameters. Therefore, it is not necessary to determine the critical frequency so
that the phase angle deviation from —180° is less than 0.001°! A few degrees error
is usually acceptable. In addition, our application of the results in determining
tuning constants must consider the likely error in the model, as discussed in the
next section.

10.8 o CONTROLLER TUNING AND STABILITY—SOME
IMPORTANT INTERPRETATIONS

Analysis using the Bode plots provides a quantitative method for evaluating how
elements in the control loop influence stability and tuning. The principles and ex
amples presented so far have demonstrated important results, which are reinforced
in the following six interpretations, discussed with further examples. The reader
is advised that these interpretations are very important, not only in tuning single-
loop controllers but also in designing more complex control strategies and process
modifications to achieve desired control performance.

Interpretation I: Effect off Process Dynamics on Tuning
Clearly, the types of process and instrument equipment in the control loop affect
the system stability and feedback tuning constants. It is worthwhile determining



how process dynamics affect feedback control, specifically the gain and integral
time of a PI controller. Since the ultimate gain of the proportional-only controller
is the inverse of the amplitude ratio at the critical frequency, a higher controller
gain for a stable system is achieved by decreasing the amplitude ratio at the critical
frequency. Also, the amplitude ratio generally decreases for process elements as
the frequency increases. Therefore, smaller time constants and dead times lead to
a larger allowable controller gain. By the same logic, smaller values of the time
constants and dead times lead to a smaller integral time, which, since integral
time appears in the denominator, has the effect of giving stronger control action.
The general conclusion is that more and longer time constants and dead times
lead to detuning of the PID controller and that fewer and shorter time constants
and dead times lead to larger controller gain, smaller integral time, and stronger
feedback action. We expect that stronger feedback action will give better control
performance, as is discussed in depth in Chapter 13.
EXAMPLE 10.12.
Consider a set of processes with one to seven first-order systems in series, each
with a gain of 1.0 and a time constant of 5.0. Determine the PI tuning for each of
these systems.

The expressions for the amplitude ratio and phase angle for a series of n
first-order systems can be developed using equations (5.40) and (10.36) and are
given as

AR (, K> yVVl+a>W
. - Icp = n tan (-o;t) with Kp = 1.0 and z = 5.0

The Ziegler-Nichols closed-loop tuning for these systems is as follows:

n coc AR|Wc Kc T,

1 00 — oo —
3 0.35 0.122 3.72 15.0
5 0.145 0.348 1.31 36.1
7 0.096 0.484 0.94 54.5
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Clearly, the controller must be detuned as the feedback dynamics become slower.

The previous example clearly demonstrates that time constants affect feed
back tuning and stability. Next, we would like to learn the relative importance
of dead times and time constants. Since many processes can be represented by a
first-order-with-dead-time model, the key relationships between tuning and frac
tion dead time 6/(0 + z) is investigated for Ziegler-Nichols PID tuning. In fact,
correlations similar to those developed in Chapter 9 can be calculated using the
Bode stability and Ziegler-Nichols methods. The PID controller gain correlations
for Ciancone and Ziegler-Nichols are compared in Figure 10.17. The correlations
have the same general shape, which points to the importance of the stability limit
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FIGURE 10.17

The effect of fraction dead time on PID controller gain with 6 + z
constant.

in determining the most aggressive control action. Recall that stability was not
explicitly considered in the Ciancone method, although tuning that gave unstable
or oscillatory systems would have a large IAE and thus would not have been se
lected as optimum. Note that the Ciancone gain values are lower, partly because
of the objectives of robust performance with model errors and partly because of
the limitation on manipulated-variable variation with a noisy measured controlled
variable. We would expect the Ciancone correlations to yield controllers that are
more robust than those developed with Ziegler-Nichols tuning and thus perform
better when realistic model errors occur.

The Bode analysis demonstrates the fundamental relationship between frac
tion dead time and tuning; the controller gain must be decreased to maintain sta
bility as the fraction dead time increases (at constant 6 + x). Finally, it is important
to reiterate that only the terms in the characteristic equation influence stability.
Therefore, the disturbance transfer function Gd(s) and the manner in which the
set point is changed do not influence the stability of the feedback control system.

F B v — L .t O
CD 1$

? A F b » F a

Increasing Ume constants and dead times requires detuning of the PID controller.
The dead time has a greater effect on the phase lag and tuning. Therefore, increasing
the fraction dead time, 6/(6 + z), at constant 6 + z requires detuning of the PID
controller.

EXAMPLE 10.13.
The two following different first-order-with-dead-time processes are to be con
trolled by PI controllers. Calculate the tuning constants for each and compare the
results.



Plant A Plant B

K p 1 . 0 1.0
t 8 . 0 2.0
0 2 . 0 8.0
\^msiiM^MsmsMs^^M^^^mm\
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For each plant the Bode stability and Ziegler-Nichols tuning calculations are sum
marized as

Plant A Plant B

coc 0.86 0.32
ARC 0.144 0.84 (P-only with Kc = 1)
Ktl 6.94 1.19
Pu 7.3 19.60
Kc 4.1 0.70
Ti 3.65 9.8
Td 0.91 2.45
lB8$KSfiNSjfS$SfiW^M«l!R$ll&i^^

Note that the two plants have the same time to reach 63% of their open-loop
response after a step change: 9 + z. Even though they have the same "speed"
of response, Plant B, with the higher fraction dead time, 9/(9 + z), has a much
smaller controller gain and larger integral time. The difference in controller tuning
constants, resulting from the different stability bound, certainly will result in poorer
control performance for Plant B. (Naturally, the longer dead time for plant B also
degrades the control performance.)

Interpretation II: Effect of Controller Modes on Stability
Each mode of the PID controller affects the stability of the feedback system. As
shown in Figure 10.13a, a gain in Gods) does not affect the phase angle, although
it affects the amplitude ratio. Therefore, increasing the magnitude of the controller
gain tends to destabilize the system; that is, move it toward an amplitude ratio
greater than 1. The proportional-integral controller shown in Figure 10.13/ affects
both the amplitude ratio and the phase angle; it increases the amplitude ratio beyond
the proportional-only controller and increases the phase lag. Thus, increasing the
gain and decreasing the integral time tend to destabilize the feedback system. The
proportional-derivative controller shown in Figure 10.13g increases the amplitude
ratio but contributes negative phase lag, referred to as phase lead. Therefore, the
derivative mode tends to stabilize the feedback system. These qualitative results
are reflected in the Ziegler-Nichols tuning rules, which show the controller gain
decreasing from P-only to PI control and increasing from PI to PID control.
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EXAMPLE 10.14.
The stability of the three-tank mixing process is to be determined for two cases: (a)
under proportional-only feedback control (Kc = 122) and (b) under proportional-
integral feedback control (Kc = 122 and 7> = 8). Note that the controller gain is the
Ziegler-Nichols value for the PID controller from Example 10.10, but the integral
time is slightly different and the derivative time is 0.

The Bode plots are presented in Figure 10.18a and b. From Figure 10.18a, it is
determined that case (a) is stable, since the amplitude ratio (0.60) is less than 1.0
at the critical frequency (0.35 rad/min). From Figure 10.18b, it is determined that
case (b) is unstable, because it has an amplitude ratio greater than 1.0 (1.3) at its
critical frequency (0.25 rad/min). This result clearly demonstrates the effect of the
integral mode, which tends to destabilize the control system, since it contributes
phase lag. Remember that the integral mode is nearly always retained, in spite
of its tendency to destabilize the control system, because it ensures zero steady-
state offset.

Interpretation III: Effect of Modelling Errors on Stability
The preceding examples in this chapter have assumed that the models of the pro
cess were known exactly. Since the true dynamic response is never known exactly,
it is important to determine how model errors affect stability. The best estimate of
the dynamics will be called the nominal model. The general trends are relatively
easy to ascertain based on the Bode stability analysis; plants with amplitude ratios
and phase lags greater than their nominal models will be closer to the stability mar
gin than the nominal model. As a example, consider a first-order-with-dead-time
process. Assuming that a nominal model is used to calculate the tuning constants,
the system will tend to be closer to the stability margin than predicted if (1) the
actual process dead time is greater than the nominal model, (2) the process gain
is greater than the nominal model, or (3) the process time constant is greater than
the nominal model.

A consideration of modelling errors should be an integral part of any con
troller tuning method. The time-domain Ciancone method in Chapter 9 specified
modelling errors and optimized the dynamic responses for several cases simul
taneously, and the Ziegler-Nichols correlations included a factor for model error
by reducing the amplitude ratio at the critical frequency to about 0.5. As a result,
a combination of model errors would have to cause the actual amplitude ratio at
the critical frequency to be about twice the nominal model value for the system
to be unstable. An alternative to the Ziegler-Nichols guideline for tuning based on
the stability limit explicitly considers a measure of potential error. This method
adjusts the controller tuning constant values so that the system is on the stable side
of the limit by a specified amount. Either of the following specifications is used.

GAIN MARGIN. The amplitude ratio of Godjo)) at the critical frequency is
equal to 1/GM, where GM is called the gain margin and should be greater than 1.
This ensures that the system is stable for any process modelling error that increases
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the actual amplitude ratio of the process by less than a factor of GM. A typical
value for GM is 2.0, but a larger value would be appropriate if large modelling
errors that primarily influenced the amplitude ratio were anticipated.

PHASE MARGIN. The phase angle of G0dj">) where the amplitude ratio is
1.0 is equal to (-180° + PM), with PM a positive number referred to as the phase
margin. A positive phase margin ensures that the system is stable for model errors
that decrease the phase angle. A typical value for the phase margin is 30°, but a
larger value would be appropriate if larger modelling errors were anticipated.

Even if the models were perfect, the values of the gain margin and phase
margin should not be reduced much below 2.0 and 30°, respectively. If they were
reduced further, the performance of the feedback control system would be poor
(i.e., highly oscillatory), because the roots of the characteristic equation would be
too near the imaginary axis. Thus, these margins can be used as a way to include
additional conservatism in the Ziegler-Nichols tuning methods if large model errors
are expected.

EXAMPLE 10.15.
A nominal model for a process is given along with parameters defining processes
I and II, which represent the range of the true process dynamics experienced
as operating conditions vary. Naturally, we never know the true process, but we
can usually estimate the potential deviations between the nominal model and true
process from an analysis of repeated model identification experiments and from
fundamental models, which indicate how the process dynamics change with, for
example, the flow rate.

(a) Determine values for the PI tuning constants based on the Ziegler-Nichols
method for the nominal model and determine the resulting gain and phase mar
gins.

(b) Determine the stability of the true process at the extremes of its parameter
ranges using the tuning based on the nominal model.

Nominal model I
True process

II

KP 1.0 1.0 1.0
z 9.0 9.5 8.0
9 1.0 0.5 2.0
n»™^™i®ij«aww!S»i^^

Tuning can be determined for the nominal model using the Bode and Ziegler-
Nichols closed-loop methods, giving the following results:

Gods)

coc = 1.65 |G0L(M)I= 0.067 tf„ = 14.9

Kc = 6.8 T, = 3.2 Gain margin = 2.0 Phase margin = 30°
The tuning constants appropriate for the nominal model using the Ziegler-Nichols
method, that satisfy the general guidelines for gain and phase margins, are now



applied to the extremes of the dynamics of the true process.

J \ 1 (\^-&s/ 1 \ 1 0e~6s
GoL(5) = 6.8(l + -i-)i^T

\ 3.2.S/ zs + 1

True process with PI control
I I I

c o c 3 . 1
ARC 0.23 < 1

0.66
1.39 > 1

M«f»MSM:j%SMSl&^^

Note that Process I is stable with the nominal tuning, whereas Process II is unstable.
The general trend should be expected, since Process II has a longer dead time,
which contributes substantial phase lag and is more difficult to control. Process I
has a shorter dead time, which contributes less phase lag and is easier to control.
The key point is that the control system would become unstable for the moderate
amount of variation of Process II from the nominal model.

Thus:
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The control engineer should not rely exclusively on general tuning guidelines but
should include information on the expected variation in process dynamics when
tuning controllers.

The goal is normally for the worst-case model error to be stable and to give an
acceptable (usually stable and not too oscillatory) closed-loop dynamic response.
Further calculations for Example 10.15 indicate that gain and phase margins for
the nominal model of 4 and 60°, respectively, were required to give satisfactory
performance for Process II. (This tuning gave gain and phase margins of 2 and
40°, respectively, for Process II.)

The need for a larger stability margin can be understood when the Bode plot is
prepared using the entire range of models possible, not just the nominal model. The
range of possible models depends on the reasons for model errors; here the simplest
approach is taken, with the process models I and II defining the extremes of the
amplitude and phase angles possible. The Bode plot of Gods) = Gc(s)Gp(s),
with the PI controller tuning for the nominal plant from Example 10.15, gives the
range of values in Figure 10.19. Any amplitude ratio and phase angle within the
two lines are possible for the assumed uncertainty. This plot clearly shows the
effects of model errors, the possibility for instability in this case, and the need for
a (larger) safety margin to account for the error. (Other ways to characterize the
model error link the variation in process operation to the change in dynamics; for
example, see Chapter 16.)
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Uncertainty in Example 10.15 defined by models I and II with tuning for the
nominal model.

Interpretation IV: Experimental Timing Approach
The Bode tuning method enables the engineer to calculate the proportional con
troller gain that brings the system to the stability limit. The same principle could be
used to determine the ultimate gain experimentally through a simple trial-and-error
procedure called continuous cycling. The real physical system would be controlled
by a proportional-only controller, the set point perturbed slightly, and the transient
response of the controlled variable observed. If the system is stable, either over-
damped or oscillatory, the gain is increased; if unstable, the gain is decreased. The
iterative procedure is continued, changing Kc until after a set point perturbation, the
system oscillates with a constant amplitude. This behavior occurs when the system
has exponential terms with (very nearly) zero values for their real parts, indicating
that the system is at the stability margin. The gain at this condition is the ultimate
gain, and the frequency of the oscillation is the critical frequency. These values,
which in the continuous cycling procedure have been determined empirically, can
be used with the Ziegler-Nichols closed-loop tuning correlations in Table 10.4 for
calculating the PID constants. From this explanation, it should be clear why the
correlations used in this section are called the "closed-loop" continuous cycling
correlations. Also, we should recognize that this method combines an experimental
identification method with tuning recommendations. This experimental method is
not recommended, because of the significant, prolonged disturbances introduced
to the process. It is presented here to give a physical, time-domain meaning to the
Bode stability calculations.
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Dynamic response of three-tank mixing process with
proportional-only controller and Kc = 206, the ultimate gain.
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EXAMPLE 10.16.
Perform the empirical continuous cycling tuning method on the three-tank mixing
process.

The resulting dynamic response at the stability limit is given in Figure 10.20.
The controller gain was found by trial and error to be 206 and the period to be
about 18 minutes. These are essentially the same answers as found in Example
10.10, where the three-tank mixing process was analyzed using the Bode method.

lA0

& - - :

1 \ . XMTOt~l
lA2

Hb •*A3

"(ST

Interpretation V: Relationship between Stabil i ty and
Per fo rmance

The analysis of roots of the characteristic equation 1 + Gods) = 0 and, equiv
alent̂ , Bode plots of Gods) provide methods for determining the stability of
linear systems. Naturally, any feedback control system must be stable if it is to
provide good control performance. However, stability is not sufficient to guarantee
good performance. To see why, consider the closed-loop transfer function for a
disturbance response:

C V i s ) G d s ) _ x G d s )or CVis) = Dis)D i s ) 1 + G d s ) G p i s ) 1 + G d s ) G p i s )
(10.41)

The stability analysis considers the denominator in the characteristic equation,
1 + Gc(s)Gp(s). Naturally, control performance also depends on the disturbance
size and dynamics that appear in the numerator of the transfer function. For ex
ample, the three-tank mixing process would certainly remain closer to the set point
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for an inlet concentration disturbance of 0.01% in stream B compared to a 1%
disturbance. Also, the system is stable when the feedback controller gain has a
value of 0.1, which would give very poor control performance compared with the
tuning determined in Example 10.10 for this process (Kc = 94.5). Clearly, the
methods in this chapter, while providing essential stability information, do not
provide all the information required for process control design. Control system
performance is covered in more detail in Chapter 13.

Stability is required for good control system performance. However, a control system
can be stable and perform poorly.

EXAMPLE 10.17.
Determine how the control performance changes for the following process with
different disturbance dynamics.

GPis) =
0.039

(l+5s)3
Gds) =

1
(1 + Tds)" (10.42)

with zd = 5 and n equal to (a) 3 and ib) 1.
The system was simulated with a PI controller using the tuning from Example

10.10. The two different disturbance transfer functions given here were consid
ered. The first case (a) is the standard three-tank mixing system, and the dynamic
response is given in Figure 10.15. The results for the faster disturbance, case ib),
are given in Figure 10.21. As expected, the faster the disturbance enters the pro
cess, the poorer the feedback control system performs. Remember, the two cases
considered in this example have the same relative stability because the feedback
dynamics Gpis) and the controller Gc are identical; only the disturbances are dif
ferent. (Also, note that the valve goes below 0% open in the simulation of the

Time
FIGURE 10.21

Dynamic response for the system in Example 10.17, case
ib) (faster disturbance).



linearized model, which is not physically possible; a nonlinear simulation should
be performed.)

Interpretation VI: Modell ing Requirement for Stabil i ty
Ana lys is
We use approximate models for control system analysis and design, and we should
select the model that provides an adequate representation of the dynamic behavior
required by the analysis method. The Bode stability analysis has pointed out the
extreme importance of model accuracy near the critical frequency. Thus, we do not
require a model that represents the process accurately at high frequencies—that
is, those frequencies much higher than the critical frequency.
EXAMPLE 10.18.
Compare the frequency responses for the three-tank mixing process derived from
(a) fundamentals and ib) empirical model fitting.

The linearized fundamental model derived in Example 7.2 and repeated in
equation (10.42) is third-order, and the empirical model is a first-order-with-dead-
time (approximate) model in Example 6.4. Their frequency responses, which equal
Gods) with Gds) = Kc = 1, are given in Figure 10.22. Note that the two frequency
responses are quite close at low frequencies, since they have the same steady-
state gains. At very high frequencies, they differ greatly, but we are not interested
in that frequency range. Near the critical frequency icoc « 0.35), the models do not
differ greatly, which indicates that the two models give similar, but not exactly the
same, tuning constants. Since essentially no model is perfect, we conclude that
the error introduced by using a first-order-with-dead-time model approximation
is often acceptably small for the purposes of calculating initial tuning constant
values. Recall that further tuning improvements are made through fine tuning.
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In summary, tuning methods were presented in this section that are based on
margins from the stability limit. The method can be applied to any stable process
with a monotonic relationship between the phase angle and frequency. The methods
in this section are especially helpful in determining the effects of various process
and controller elements on the tuning constants.

10.9 Q ADDITIONAL TUNING METHODS IN COMMON USE,
WITH A RECOMMENDATION

To this point, two controller tuning methods have been presented. The Ciancone
correlations were based on a comprehensive definition of control performance in
the time domain, whereas the Ziegler-Nichols closed-loop method was based on
stability margin. Many other tuning methods have been developed and reported
in the literature and textbooks. A few of the better known are summarized in this
section, along with a recommendation on the methods to use.

One well-known method, known as the Ziegler-Nichols open-loop method
(Ziegler and Nichols, 1942), provides correlations that can be used with simplified
process models developed from such sources as an open-loop process reaction
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FIGURE 10.22

Comparison of Bode plots for exact and approximate process models.

101

curve. The objective of these correlations is a 1:4 decay ratio for the controlled
variable. The tuning constants are calculated from the experimental model param
eters according to the expressions in Table 10.5. Notice that the dead time is in
the denominator of the calculation for the controller gain. This indicates that the
controller gain should decrease as the dead time increases, a result consistent with
other tuning methods already considered. However, the open-loop Ziegler-Nichols
correlation predicts a very large controller gain for processes with small dead times
and an infinite gain for processes with no dead time. These results will lead to ex
cessive variation in the manipulated variable and to a controller with too small
a stability margin. Therefore, these correlations should not be used for processes
with small fraction dead times.

Many other tuning methods have been developed, generally based on either
stability margins or time-domain performance. A summary of the methods is pre
sented in Table 10.6, which gives the main objectives of each method, along with
a reference, either in this book or in the literature. Note that the IMC method is
covered in Chapter 19.



TABLE 10.5

Ziegler-Nichols open-loop tuning
based on process reaction curve

Kr

P-only
PI
PID

i\/Kp)/iz/9)
i0.9/Kp)iz/9)
i\.2/Kp)iz/9)

Td

3 . 3 9 —
2 . 0 9 0 . 5 9
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TABLE 10.6

Summary of PID tuning methods

Tuning
method

Stabil i ty
objective

Objective
for CV(0

Objective
for MV(0

Model
error

Noise
on CV(0

Input
SP = set point
D = disturbance

Ciancone None explicit Min IAE Overshoot ±25% Yes SP and D
(Chapter 9) and variation

with noise
individually

Fertik(1974) None explicit Min ITAE
with limit
on overshoot

None None
explicit

No SP and D
individually

Gain/phase Gain margin None None Depends on No n/a
margin (Section 10.8) or phase margin margins
IMC tuning For specified ISE (robust None Tune A, see No SP and D
(Section 19.7) model error performance) Morari and

Zafiriou(1989)
(step and ramp)
individually

Lopez et al. None explicit IAE, ISE, or None None No SP and D
(1969) ITAE individually

Ziegler-Nichols Implicit margin 4: 1 decay None None No n/a
closed-loop for stability ratio explicit
(Section 10.7) (GM % 2)

Ziegler-Nichols
open-loop
(Section 10.9)

Implicit margin
for stability
(GM « 2)

4 : 1 decay None
ratio

None
explicit

No n/a

With such a large selection available, some recommendations are needed to as
sist in the proper choice of tuning method. Before presenting recommendations, a
few key factors should be reiterated. First, most tuning methods rely on a simplified
dynamic model of the open-loop process. As a result, good control performance
from the tuning depends on reasonably accurate model identification. Tuning cal
culations cannot correct for modelling errors; they can only reduce the detrimen
tal effects of such errors. Second, the tuning constants should be determined so
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FIGURE 10.23

Major steps in the tuning
procedure.

that the control system achieves desired performance objectives relevant to the
process. Because each method has different objectives, each provides somewhat
different dynamic performance, which should be matched to the process require
ments. Third, all methods provide initial values, which should be fine-tuned based
on plant experience; the tuning procedure shown in Figure 10.23 should be used.
The tuning methods being discussed appear as the "initial tuning" that relies on the
identification and is modified by fine tuning, which corrects for modelling errors
and adapts the performance to that desired for the process.

The proper selection for a particular application should follow from the infor
mation in the table. In other words:

The best choice for the initial tuning correlation is the method that was developed
for objectives conforming most closely to those of the actual situation for which the
controller is being tuned.

The following ranking, with the first entry being the preferred method, represents
the author's personal preference for calculating initial tuning.

1. Ciancone tuning correlations from Chapter 9
2. Bode/(closed-loop) Ziegler-Nichols when process cannot be satisfactorily fit

ted by a first-order-with-dead-time model
3. Nyquist/gain margin when the process does not satisfy the Bode criteria
4. Any of the other correlations as appropriate for the application scenario
5. Detailed analysis of the robustness of the system, through either the opti

mization method in Chapter 9 or the robust performance analysis described
in Morari and Zafiriou (1989)

Approach 5 would always be the best, but it requires more effort than is usually
justified for initial tuning. However, it may be required for systems involving
complex dynamics and large model errors.

1 0 . 1 0 □ C O N C L U S I O N S

Several important topics have been covered in this chapter that are essential for a
complete understanding of dynamic systems. We have learned

1. A useful definition of stability related to poles of the transfer function, i.e.,
the exponents in the solution of a set of linear differential equations

2. The effects of process and control elements in the feedback path that affect
stability, such as dead times and time constants

3. Tuning methods based on a margin from the stability limit
4. That model errors must always be considered in tuning and that this results in

detuned (i.e., less aggressive) feedback control action

All of these results are consistent with the experience gathered in Chapter 9,
which was restricted to first-order-with-dead-time processes and PID control. The
methods in this chapter provide a valuable theoretical basis that helps us understand



time-domain behavior and that can be applied for quantitatively analyzing stability
and determining tuning for a wide range of systems. Numerical examples in this
chapter, as well as Chapter 9, have demonstrated that simple linear models are often
adequate for calculating initial tuning constants. These results confirm that the first-
order-with-dead-time models from empirical model fitting provide satisfactory
accuracy for this control analysis.

The stability analysis methods presented in this chapter are summarized in
Figure 10.24, which gives a simple flowchart for the selection of the appropriate
method for a particular problem. Note that the direct analysis of the roots of the
characteristic equation is applicable to either open- or closed-loop systems that
have polynomial characteristic equations. The Bode method can be applied to
most closed-loop systems, and the Nyquist method is the most general.
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Is the system open- or closed-loop?

Open-loop Closed-loop

Determine the linear transfer
function model
T O r i x

Determine the linear transfer
function model
C V ( 5 ) G d j s )
Dis) l+Gpis)Gvis)Gcis)Gsis)

Assuming that input is
bounded and numerator is
stable, denominator of Gpis)
determines stability

Assuming that input is
bounded and the numerator is
stable, denominator determines
stability

Is the denominator a
polynomial in si

Is the denominator a
polynomial in si

N Yo r N

* Cannot solve
for roots directly

* Bode stability is for
closed-loop systems

* Therefore, root locus
and Bode not applicable

Solve for the roots of the
denominator directly
Dis) = 0
s = alta2,...

* Nyquist method
applicable for this case

System is stable if
Re(a),<0
for all i

Is the process without
control stable?

N Is |GolO*°)I monotonic
after first crossing
of-180°?

Calculate toc from
^GOl0'C0c)=180o
System is stable if
IGol(M,)I<I.O

FIGURE 10.24

Flowchart for selecting the stability analysis method for local analysis using linearized
models.
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Many controller tuning methods have been presented in these two chapters.
The correct method for a particular application depends on the objectives of the
control system. The information in Table 10.6 will enable you to match the tuning
with the control objectives. If no specific information is available, the Ciancone
tuning correlations in Chapter 9 are recommended for initial tuning constant values.
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The stability of a nonlinear system in a defined region can be determined
for some systems and regions using the (second) method of Liapunov, which is
presented in Perlmutter (1972) and

LaSalle, J., and S. Lefschetz, Stability of Liapunov s Direct Method with Ap
plications, Academic Press, New York, 1961.

The methods introduced in this chapter provide a theoretical basis for determining
the effects of all elements in the feedback loop, process, instrumentation, and control
algorithm on stability and tuning. These questions ask you to apply these methods.

QUESTIONS
10.1. Consider the three-tank mixing process with a proportional-only controller

in Example 10.5. Recalculate the root locus for the case with the three tank
volumes reduced from 35 to 17.5 m3. Determine the controller gain for a
proportional-only algorithm at which the system is at the stability limit.
Compare your result with Example 10.5 and discuss.

10.2. Example 10.4 established the stability of a system when operated at a
temperature T = 320 K. Given the expression for the reaction rate constant
of k = 6.63 x 108e~6500/7'min"1, determine if the system is stable at 300 K
and 340 K. Explain the trend in your results and determine which of the
three cases is the worst case from a stability point of view.

10.3. Answer the following questions, which revisit the interpretations (I-VI) in
Section 10.8.
ia) (I) For the process in Example 5.2, determine the PI controller tuning

constants using the Ziegler-Nichols closed-loop method. The manipu
lated variable is the inlet feed concentration, and the controlled variable
is (i) Y\, (ii) Y2, (iii) *3, and (iv) Ya. Answer for both cases 1 and 2 in
Example 5.2.

ib) (II) Discuss the effect of the derivative mode on the stability of a
closed-loop control system. Explain the results with respect to a Bode
stability analysis.

(c) (III) A linearized model is derived for the process in Figure 9.1. The
model is to be used for controller tuning. Model errors are estimated
to be 30 percent in L, V, and FB, and they can vary independently.
Estimate the worst-case dynamic model that is possible within the
estimated errors.

id) (IV) Assume that experimental data indicates that a closed-loop PI
system experienced sustained oscillations with constant amplitude at
specified values of their tuning constants K'c and Tj. Estimate proper,
new values for the tuning constants.

ie) (V) Determine the range of tuning constant values that result in stability
for the following systems and plot the region with Kc and 7} as axes.
Locate good tuning constant values within this region: (1) the level
system in Example 10.1 for P-only and PI controllers; (2) the three-
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tank mixing system with a PI controller; (3) Figure 9.1 with 9 = 5 and
T = 5 .

if) (VI) Using arguments relating to stability and Bode plots, determine
model simplifications in the system in Figure 7.1 and Table 7.2, to
give the lowest-order system needed to analyze stability and tuning
with acceptable accuracy.

10.4. Given the process reaction curve in Figure Q10.4, calculate initial PID
controller tuning constants using the Ziegler-Nichols tuning rules. Compare
the results to values from the Ciancone correlations and predict which set
of values would provide more aggressive control.

T
5% valve position

l l l l l l l l L
0

Time
FIGURE Q10.4

200

10.5. Given a feedback control system such as the three-tank mixing process,
determine the effect of the following equipment changes on the tuning
constants.
(a) Installing a faster-responding control valve.
(b) Installing a control valve with a larger maximum flow.
(c) Installing a faster-responding sensor.

10.6. Without calculating the exact values, sketch the Bode plots for the following
transfer functions using approximations:

5 . 3 1 2 0 e ~ 2 s
(a) Gods) = 3-=—j ib) Gods) = - ic) Gods) = ' „24 . 5 s + 1 5 s ( 3 s + l ) 2

10.7. Determine the root locus plot in the complex plane for controller gain
of zero to instability for the following processes: (a) example heater in
Section 8.7; (b) Example 10.1; (c) Example 10.8. For the systems with PI
controllers, assume that the integral time is fixed at the value in the original
solution.

10.8. (a) Is the Bode stability criterion necessary, sufficient, or necessary and
sufficient?



(b) Is it possible to determine the stability of a feedback control system
with non-self-regulating process using the Bode stability criterion?

(c) Explain the limitations on the process transfer function imposed for
the use of the Bode method.

(d) Determine the stability of the system in Example 10.4 using the Bode
method.

10.9. Confirm the expressions for the amplitude ratios and phase angles given in
Table 10.2.

10.10. Prove the following statements and give an explanation for each in your
own words by referring to a sample physical system.
(a) The phase lag for a gain is zero.
(b) The amplitude ratio for a first-order system goes to zero as the fre

quency goes to infinity.
(c) The amplitude ratio for a second-order system with a damping coeffi

cient of 0.50 is not monotonic with frequency.
(d) The phase angle decreases without limit as the frequency increases for

a dead time.
(e) For an integrator, the amplitude ratio becomes very large for low fre

quencies and becomes very small for large frequencies.
if) The amplitude ratio for a PI controller becomes very large at low

frequencies.
10.11. For each of the physical systems in Table Q10.11, explain whether it can

experience the dynamic responses shown in Figure Q10.11 for a step input
(not necessarily at / = 0). The systems are to be considered idealized;

Em
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TABLE Ql 0.11

Con t ro l
Input var iable Output variable ( sepa ra te
(separate answer (separate answer a n s w e r

System for each) for each) for each)

Figure 7.1 and Signal to value Measured temperature None
Example 7.1
Example 8.5 Set point Tank temperature (i) P-only

(ii) PI
Reactor in Fc Reactor temperature None
Section C.2
Example 1.2 0)FS

(ii) FA
(i)CAi,(ii)CA2 None

Example 3.3 (i) CA0
(ii) ̂ F*

(i)CAll(ii)CA2 None

Example 9.1 Set point cA PID
Example 7.2 (i) Signal to valve (i)CAi,(ii)CA2, and (i) None

(ii) Set point of controller in (iii) CA3 (ii) P-only
Example 9.2 (iii) PI

l&a^t&lWMteBi^^
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Time

ic)
FIGUREQ10.il

in other words, the mixing is perfect, final element and sensor dynamics
are negligible unless otherwise stated, and so forth. Provide quantitative
support for each answer based on the model structure of the system.

10.12. The Bode stability technique is applied in this chapter to develop the
Ziegler-Nichols closed-loop tuning method. For each of the following
changes describe an appropriate modification to the closed-loop Ziegler-
Nichols tuning method. Answer each part of this question separately.
id) The controller used in the plant calculates the error with the sign in

verted; E = CV - SP.
ib) The linear plant model identified using a process reaction curve also

has an estimate of the uncertainty in its feedback model parameters,
Kp, 6, and z.

ic) The process model, in addition to parameters for the feedback process,
has estimates of the disturbance dead time and time constant.

10.13. The stability analysis methods introduced in this chapter are for linear
systems, which give local results for nonlinear systems. What conclusions
can be drawn from the linear analysis at the extremes of the ranges given
about the stability of the following systems? (a) Example 9.4 with FB
varying from 6.9 to 5.2 m3/min and ib) Example 9.1 with the volume of
the tank and pipe varying by ±30%.

10.14. Given the systems with roots of the characteristic equation shown in Figure
Q10.14, sketch the transient responses to a step input for each, assuming
the numerator of the transfer function is 1.0.

10.15. Prove all of the statements in Table 10.3.
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ic) A

FIGURE Ql 0.14

10.16. Answer the following questions regarding the derivative mode.
ia) Based on the Bode plot of a PID controller, what is the effect of high-

frequency measurement noise on the manipulated variable?
ib) Redraw Figure 10.13/* for Td = 77/4.
ic) We have considered a PID controller that uses error in the derivative

for the stability analysis. However, the controller algorithm used com
monly in practice uses the controlled variable in the derivative mode.
How should the stability analysis be altered to account for the use of
the controlled variable in the derivative?

10.17. Consider the three-tank mixing process in Example 7.2 with the same three
5-minute time constants and with a transportation delay of 4.3 min between
the mixing point and the entrance to the first tank.
(a) Calculate initial tuning parameters using the Bode stability method

and the Ziegler-Nichols correlations.
(b) Explain the changes in the tuning constant values from those in Ex

ample 10.10.
(c) Would you expect the control performance for the system with trans

portation delay to be better or worse than the system without trans
portation delay?

10.18. (a) The dynamic performance of the system in Example 10.10 was deemed
too oscillatory with the initial tuning calculated via Ziegler-Nichols
correlations. How would you change the tuning constants, which con
stants, and by how much to achieve reasonably good performance with
little oscillation?

(b) Given the results in Example 10.13 which showed that the Ziegler-
Nichols tuning correlations do not seem to yield robust control perfor
mance for low fraction dead time, how would you modify the Ziegler-
Nichols correlations for 6/(9 + z) < 0.2?

Questions


