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9.1 m INTRODUCTION
As demonstrated in the previous chapter, the proportional-integral-derivative (PID)
control algorithm has features that make it appropriate for use in feedback control.
Its three adjustable tuning constants enable the engineer, through judicious selec
tion of their values, to tailor the algorithm to a wide range of process applications.
Previous examples showed that good control performance can be achieved with a
proper choice of tuning constant values, but poor performance and even instability
can result from a poor choice of values. Many methods can be used to determine
the tuning constant values. In this chapter a method is presented that is based on
the time-domain performance of the control system. Controller tuning methods
based on dynamic performance have been used for many decades (e.g., Lopez et
al., 1969; Fertik, 1975; Zumwalt, 1981), and the method presented here builds on
these previous studies and has the following features:

1. It clearly defines and applies important performance issues that must be con
sidered in controller tuning.

2. It provides easy-to-use correlations that are applicable to many controller
tuning cases.

3. It provides a general calculation approach applicable to nearly any control
tuning problem, which is important when the general correlations are not
applicable.
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4. It provides insight into important relationships between process dynamic
model parameters and controller tuning constants.

9.2 a DEFINING THE TUNING PROBLEM
The entire control problem must be completely defined before the tuning constants
can be determined and control performance evaluated. Naturally, the physical pro
cess is a key element of the system that must be defined. To consider the most
typical class of processes, a first-order-with-dead-time plant model is selected here
because this model can adequately approximate the dynamics of processes with
monotonic responses to a step input, as shown in Chapter 6. Also, the controller
algorithm must be defined; the form of the PID controller used here is

MV(0 = Ke \E(t) + yj* E(t')dt' - Td^P~~\ + / (9.1)
Note that the derivative term is calculated using the measured controlled variable,
not the error.

The tuning constants must be derived using the same algorithm that is applied in the
control system. The reader is cautioned to check the form of the PID controller algo
rithm used in developing tuning correlations and in the control system computation;
these must be compatible.

Next, we carefully define control performance by specifying several goals to be
balanced concurrently. This definition provides a comprehensive specification of
control performance that is flexible enough to represent most situations. The three
goals are the following:

1. Controlled-variable performance. The well-tuned controller should provide
satisfactory performance for one or more measures of the behavior of the
controlled variable. As an example, we shall select to minimize the IAE of
the controlled variable. The meaning of the integral of the absolute value of
the error, IAE, is repeated here.

IAE = / '
Jo \SP(t)-CV(t)\dt (9.2)

Zero steady-state offset for a steplike system input is ensured by the integral
mode appearing in the controller.

2. Model error. Linear dynamic models always have errors, because the plant is
nonlinear and its operation changes. Since the tuning will be based on these
models, the tuning procedure should account for the errors, so that acceptable
control performance is provided as the process dynamics change. The changes
are defined as ± percentage changes from the base-case or nominal model
parameters. The ability of a control system to provide good performance
when the plant dynamics change is often termed robustness.

3. Manipulated-variable behavior. The most important variable, other than the
controlled variable, is the manipulated variable. We shall choose the com-
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Summary of factors that must be defined in tuning a controller
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Major loop
component Key factor

Values used in this chapter for
examples and correlations

Process

Controller

Control
performance

Model structure
Model error

Linear, first-order with dead time
± 25% in model parameters (structured so
that all parameters increase and decrease
the same %)
Step input disturbance with Gd(s) = Gp(s)
and step set point considered separately
Unbiased controlled variable with high-
frequency noise
PID and PI
Kc, 77, and Td
Minimize the total IAE for several cases
spanning a range of plant model
parameter errors
Manipulated variable must not have varia
tion outside defined limits; see Figure 9.4

Input forcing

Measured variable

Structure
Tuning constants
Controlled-variable behavior

Manipulated-variable behavior
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mon goal of preventing "excessive" variation in the manipulated variable by
defining limits on its allowed variation, as explained shortly.

To evaluate the control performance, the goals and the scenario(s) under which
the controller operates need to be defined. These definitions are summarized in
Table 9.1; the general factors are in the second column, and the specific values
used to develop correlations in this chapter are in the third column. This may seem
like a rather lengthy list of factors to establish before tuning a controller, but they
are essential to any proper tuning method. Fortunately, the rather standard set of
specifications in the third column is appropriate for a wide range of applications,
and therefore it is possible to develop correlations that can be used in many plants,
where this underlying specification of control performance is valid. The entries in
Table 9.1 will be further explained as they are encountered in the next section. All
subsequent chapters in this book require a good understanding of the factors that
affect control performance.

The reader is encouraged to understand the factors in Table 9.1 thoroughly and to
refer back to this section often when covering later chapters.

9.3 □ DETERMINING GOOD TUNING CONSTANT VALUES

Given a complete definition of the process, controller, and control objectives, eval
uating the tuning constants is a relatively straightforward task, at least conceptu
ally. The "best" tuning constants are those values that satisfy the control perfor
mance goals. With our definitions of Goals 1 to 3, the optimum tuning gives the
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minimum IAE, for the selected plant (with variations in model parameters), when
the manipulated variable observes specified bounds on its dynamic behavior.

The control objectives in Table 9.1 have been defined so that they can be quan
titatively evaluated from the dynamic response of a control system. The dynamic
response of the control system with a complex process model including dead time
cannot be determined analytically, but it can be evaluated using a numerical so
lution of the process and controller equations. The dynamic equations are solved
from the initial steady state to the time at which the system attains steady state
after the input change. The best values of the tuning constant can be determined by
evaluating many values and selecting the values that yield best measure of control
performance. Since the goal of this presentation is to concentrate on the effects
of the process dynamics on tuning, not the detailed mathematics, the reader may
visualize the best values being found by a grid search over a range of the tuning
constant values, although this procedure would involve excessive computations.
(Some further details on the solution approach are given in Appendix E.) The result
is a set of tuning (Kc, Tj, Td) that gives the best performance for a specific plant,
model uncertainty, and control performance definition.

As explained in Section 9.2, we will consider a first-order-with-dead-time
plant because this model can (approximately) represent the dynamics of many
overdamped processes. As a helpful image for the reader, a simple mixing process
example shown in Figure 9.1 will be used throughout this chapter, although the
results are not limited to this simple process, as will be demonstrated later in the
chapter. The process can be described by the following transfer function model:

Gds)G'p(s)Gs(s) GPis) =
Kne-9s

ZS + l (%A in outlet)/(%valve opening)
(9.3)

Gdis) = Kd
zs + \ (%A in outlet)/(%A in inlet) (9.4)

From a fundamental balance on component A, the dead time and time constant can
be determined as the following functions of the feed flow rate and equipment size.

Process used for calculating example tuning constants for good
control performance.



The base case values are given here, and the functional relationships will be used
in later examples to determine the modified dynamics for changes in production
rate (FB).

Parameter Dependence on process Base case value
Dead time, 0
Time constant, z
Steady-state gain, KP

(A)iL)/FB
V/FB

Kv[ixA)A - ixA)B]/FB

5.0 min
5.0 min
1.0 (%A in outlet)/(%open)
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In general, the three tuning constants iKc, 7>, and Td) should be evaluated si
multaneously to achieve the best performance. However, we will gain considerable
insight by considering the PID tuning constants and performance goals sequen
tially. This will enable us to learn how the goals influence the values of the tuning
constants and also the interaction among the values of the three tuning constants.
Therefore, we shall begin with the simplest case, determining the value of one tun
ing constant, Kc, which results in the minimum in the performance measure goal
1 (IAE). In this initial case, the other two tuning constant values (7) and Td) will
be held constant at reasonable values. Then, values of all three tuning constants
will be determined that give the best control performance, as represented by goal
1 (IAE). Finally, the values of the tuning constants are determined that give the
best performance, as measured by the complete definition of control performance,
goals 1 to 3.

Recall that the feedback control system is designed to respond to disturbances
and changes in set points (desired values). Initially, we will restrict attention to a
unit step disturbance in the inlet concentration, Dis) = \/s %A in the inlet. Later,
set point changes will be addressed.

Goal 1: Controlled-Variable Performance (IAE)

Let us begin with a PID controller applied to the example process. We will start by
optimizing only one controller constant. Recall that the integral mode is required
so that the controlled variable returns to its set point. Therefore, the study will find
the best value of the controller gain, Kc, with the integral time (7> = 10 min)
and derivative time (Td = 0 min) temporarily maintained at fixed values. The
value selected for the integral time (the sum of the dead time and time constant)
is reasonable (although not optimum), as demonstrated by further results, and the
derivative time of zero simply turns off the derivative mode. For this first case, the
goal in this analysis is temporarily limited to achieving the minimum value of the
IAE for the base case plant model.

The results of several transient responses are presented in Figure 9.2, with
each case having a different value of the controller gain. The results show that the
relationship between IAE and Kc is unimodal; that is, it has a single minimum.
The minimum IAE is at a controller gain value of about Kc = 1.14%/(mole/m3)
with an IAE of 9.1. For values of the controller gain smaller than the best value
(e.g., Kc = 0.62), the controller is too "slow," leading to higher IAE. For values
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Process dynamics: Kp= 1.0, 0 = 5.0, t= 5.0
Kc=0.62 IAE =16.1

1

0 . 5 1 1 . 5
Controller gain
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£.= 1.14 IAE = 9.2
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FIGURE 9.2
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£=1.52 IAE =16.5

Dynamic responses used to determine the best controller gain, Kc% open/ %A,
with T, = 10 and Ta = 0.

of the controller gain larger than the best value (e.g., Kc = 1.52), the controller is
too "aggressive," leading to oscillations and higher IAE. Note that the optimum is
somewhat "flat"; that is, the control performance does not change very much for a
range (about ±15%) about the optimum controller gain. However, if the controller
gain is increased too much, the system will become unstable. (Determining the
stability limit is addressed in the next chapter.)

The graphical presentation used for one constant can be extended to two
constants by varying the controller gain and integral time simultaneously while
holding the derivative time constant (7^ = 0). Again, many dynamic responses can
be evaluated and the results plotted. In this case, the coordinates are the controller
gain and integral time, with the IAE plotted as contours. The results are presented in
Figure 9.3, where the optimum tuning is Kc = 0.89 and 7> = 7.0. Again, the same
qualitative behavior is obtained, with very large or small values of either constant
giving poor control performance. In addition, the contours show the interaction
between the variables; for example, nearly the same control performance can be
achieved by gain and integral time values of (Kc = 0.6 and T§ = 4.5) and (Kc —
1.2 and 77 = 10), respectively. Again, the control performance is not too sensitive
to the tuning values, as shown by the large region (valley) in which the performance
changes by only about 10 percent. Finally, the evaluations identified a region in
which the control system is not stable; that is, where the IAE becomes infinite. It
is interesting that the region of good control performance—the lower valley in the
contour plot—runs nearly parallel to the stability bound. This result will be used
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FIGURE 9.3

Contours of controller performance, IAE, for values of
controller gain and integral time.

TABLE 9.2

Summary of tuning study

Case Objective

I n t e g r a l D e r i v a t i v e
Ga in , Kc t ime , T, t ime , Td
( % / % A ) ( m i n ) ( m i n ) I A E +

Optimize Kc
Optimize Kc
and T,
Optimize Kc,
Than6Td
Optimize Kc,
T,, and Td

G o a l 1 ( I A E ) 1 . 1 4
G o a l 1 ( I A E ) 0 . 8 9

G o a l 1 ( I A E ) 1 . 0 4

G o a l 1 - 3 0 . 8 8
simultaneously

10.0 (fixed) 0.0 (fixed)
7 . 0 0 . 0 ( fi x e d )

5.3

6.4

2.1

0.82

9.2
8.5

5.8

7.4* -*■

+Evaluated for nominal model (without error) without noise. Process parameters were the
gain Kp = 1.0%A/%, the time constant r = 5 minutes, and the dead time 0 = 5 minutes.
•Greater than 5.8 because of additional goals 2 and 3.
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•recommended

in the next chapter, in which the stability of control systems is studied and tuning
constant values are determined based on a margin from the stability bound.

When three or more values are optimized, as is the case for a three-mode
controller, the results cannot be displayed graphically. One could take the same
optimization procedure described for one- and two-variable problems, which is
simply to evaluate the IAE over a grid of tuning constant values and estimate
the best values from the results or use a more sophisticated and efficient approach.
The application of an optimization to the example process yields values of all three
parameters that minimize IAE, and the values are reported in Table 9.2. This table
summarizes the results with one, two, and all three constants being optimized;
clearly, as more constants are free for adjustment, the IAE controller performance



274

CHAPTER 9
PID Controller Tuning
for Dynamic
Performance

measure improves (i.e., decreases). Also, the optimum values for the controller
gain and integral time change when we include the derivative time as an adjustable
variable in the optimization. This result again demonstrates the interaction among
the tuning constants.

Minimizing the IAE is only the first of the three specified goals, which con
siders the behavior of only the controlled variable and assumes perfect knowledge
(model) of the process. This preliminary result does not provide the best control
performance according to our specified goals; therefore, we must continue to refine
the procedure to determine the best tuning constant values.

Goal 2: Good Control Performance with Model Errors
To this point we have determined tuning constant values that minimize the IAE
when the process dynamics are described exactly by the base case dynamic model.
However, the model is never perfect, because of errors in the model identification
procedure, as demonstrated in Chapter 6. Also, plant operating conditions, such as
production rate, feed composition, and purity level, change, and because processes
are nonlinear, these changes affect the dynamic behavior of the feedback process.
The effect of changing operating conditions can be estimated by evaluating the
linearized models at different conditions and determining the changes in gain, time
constant, and dead time from their base-case values. Since the true process dynamic
behavior changes, a useful tuning procedure should determine tuning constants
that give good performance for a range of process dynamics about the base case or
nominal model parameters, as required by the second control performance goal.
When the tuning results in satisfactory performance for a reasonable range of
process dynamics, the tuning is said to provide robustness.

In performing control and tuning analyses, the engineer must define the expected
model error. The error estimate, usually expressed as ranges of parameters, can be
based on the variation in plant operation and fundamental models from Chapters 3
through 5 or the results of several empirical model identifications using the methods
in Chapter 6.

The size and type of model error is process-specific. For the purposes of devel
oping correlations, the major source of variation in process dynamics is assumed to
result from changes in the flow rate of the feed stream Fb in Figure 9.1 that cause
±25% changes in the parameters. While the range of parameters depends on the
specific process, most processes experience parameter value changes of roughly
this magnitude, and some have much larger variations. The resulting model pa
rameters are given in Table 9.3; these values can be derived using the expressions
already given relating the linearized model parameters to the process design and
operation. Since in this example all parameters are proportional to the inverse of
the feed flow, the parameters do not vary independently but in a correlated man
ner as a result of changes in input variables. Such correlation among parameter
variation is typical, because the major cause of variation in process dynamics is
nonlinearity. Naturally, the functional relationship depends on the process and is
not always as shown in the table.



TABLE 9.3
Model parameters for the three-tank process

Low flow, Base case High flow,
Model parameters / = 1 flow, / = 2 / = 3

KP
e
z

1.25
6.25
6.25

1.0
5.0
5.0

0.75
3.75
3.75

275

Determining Good
Tuning Constant

Values

The goal is to provide good control performance for this range, and one way
to consider the variability in dynamics is to modify the objective function to be the
sum of the IAE for the three cases, which include the base case and the extremes
of low and high flow rates in Table 9.3. The objective is stated as follows:

Minimize

by adjusting

EIAE< (9.5)
i = i

Kc, Ti, Td

IAE,- = rJo |SP(0-CV,-(/)|o7

where CVt(t) is calculated using process parameters for i = 1 to 3 in Table 9.3.
This modification is very important, because tuning constants that yield good

performance for the nominal model may give poor performance or even result in
instability as the true process parameters vary. Next, the third goal is discussed;
afterward, the tuning constants satisfying all three goals are determined.

Goal 3: Manipulated-Variable Behavior

The third and final goal addresses the dynamic behavior of the manipulated vari
able by requiring it to observe a limitation. As previously discussed, its variation
should not be too great, because of wear to control and process equipment and
disturbances to integrated units. There are many ways to define the variation of the
manipulated variable. Here we will bound the allowed transient path of the manip
ulated variable to a specified region around the final steady-state value during the
dynamic response as shown in Figure 9.4. This rather general limitation enables
us to address two related issues in manipulated-variable variation:

1. The largest-magnitude variation in the manipulated variable in response to a
disturbance or set point change

2. The high-frequency variation resulting from the small, continuous changes in
the controlled variable often referred to as noise

The allowable manipulated-variable range is large during the initial part of the
transient, where, in general, the manipulated variable should be able to overshoot its
final value. The range is smaller after the effect of the step disturbance is corrected.
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Average final value

Bound on manipulated variable
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FIGURE 9.4

Dynamic response of a feedback control system showing the bound on
allowable manipulated-variable adjustments.

Even after a long time, the manipulated variable cannot be required to be absolutely
constant, because feedback control responds to the small, continuous changes in the
controlled variable (i.e., the noise). The limitation on the manipulated variable is
determined by parameters that define the bound shown in Figure 9.4. Simulations
to evaluate a tuning for goals 1 through 3 include representative noise on the
measured, controlled variable and a bound on the manipulated variable. A model
for defining the bound on the path, along with parameters used in this book, is
presented in Appendix E.

The proper values of the parameters used to define the allowed manipulated
variable behavior should match the process application. The values in this study
are good initial estimates for many process control designs. However, the specific
parameter values are not the key concept in this goal statement; what is most
important is this:

A properly denned statement of control performance includes a specification of
acceptable manipulated-variable behavior.

Since both controlled- and manipulated-variable plots of behaviors are important,
most closed-loop transient responses in this book show both the controlled and
manipulated variables; in general, it is not possible to evaluate control performance
by observing only the controlled variable.

The controller constants in the example mixing process are optimized for the
complete definition, and the results are Kc = 0.88, 77 = 6.4, and Td — 0.82. The
dynamic response is given in Figure 9.4 for the nominal plant response. (Recall



that three dynamic responses, including model error, were considered concurrently
in determining the optimum.) These tuning parameters satisfy goals 1 through 3
in our control performance definition. Note that compared to the results reported
in Table 9.2, which satisfy only goal 1, the values satisfying all three goals have a
lower gain, longer integral time, and shorter derivative time. Thus:
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The controller is detuned, leading to less aggressive adjustments by the feedback
controller, to account for modelling errors and to reduce the variation in the manip
ulated variable.

These tuning constants will not perform best when the model error is zero and no
noise is present, but they will perform better over an expected range of conditions
and are the values recommended for initial application.
EXAMPLE 9.1.
A modified process in Figure 9.1, with a shorter pipe and larger tank described
by the nominal model in equation (9.6), is to be controlled by a PID controller.
Determine the best initial tuning constant values for a PID controller based on (a)
goal 1 alone and ib) goals 1 through 3.

Gvis)G'pis)Gsis) Gpis) =
\.0e- I s

8s+ 1

Gds) =
1

8.S + 1 with Dis) = -s (9.6)

Gds) = KC\Eis) + ^1-Tds CVis)Tis

The mathematical optimization must be performed for the two cases. The re
sults of the analysis are given in Table 9.4. The results are similar to the example
discussed previously in that the controller gain is decreased, the integral time
is increased, and the derivative time is decreased—in this example to zero—as
the additional goals are added. The net effect of adding goals 2 and 3 is that
total deviation of the controlled variable from its set point (IAE) is larger than that
achieved for the nominal process without modelling error. However, the perfor
mance indicated by the more comprehensive measure, considering all cases and
behavior of both the controlled and manipulated variables, is the best possible

-3
do ©

h»FA

TABLE 9.4
Results for Example 9.1

Case
Contro l ler In tegra l Der ivat ive
gain, Kc t ime, T, t ime, Td IAE

(a) Performance, goal 1 alone 3.0
ib) Performance, goals 1-3 1.8

3.7
5.2

1.1
0.0

1.46
2.95

Evaluated for nominal model (without error) without noise.

■recommended
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with a PID control algorithm. Thus, the tuning from case (b) is more robust, as will
be demonstrated in Example 9.5.

Again we see that there is interaction among the tuning constants. As demon
strated for a simple process in Example 8.5, each tuning constant affects many
control performance measures, such as decay ratio and overshoot. Therefore, all
tuning constants should be determined simultaneously to obtain the best possible
performance within the capability of the PID algorithm.

In conclusion, a very general method has been presented in this section for
evaluating controller tuning constants. The method can be applied to any process
model and controller algorithm and was applied to the linear, first-order-with-
dead-time process and PID controller in this section. The method addresses most
control performance issues in a flexible manner, so that the engineer can adapt
it to most circumstances by changing a few parameters in the control objective
definition, such as the magnitude of the model errors or the allowable variability
of the manipulated variable. However, an optimization must be performed for each
individual problem, which could be very time-consuming. Thus, the next section
describes how controller tuning can be performed quickly in many situations using
correlations developed with the optimization procedure.

9.4 n CORRELATIONS FOR TUNING CONSTANTS
The purpose of tuning correlations is to enable the engineer to calculate tuning
constants for many process applications that simultaneously achieve the three
goals defined in Section 9.2 without performing the optimization. Correlations
for tuning constants will reduce the engineering effort in controller tuning, and,
perhaps more importantly, the correlations will show how the controller constants
depend on feedback process dynamics. For the correlations developed in this sec
tion, the tuning goals will be those defined in Table 9.1 and used in the previous
example:

1. Minimize IAE
2. ±25% (correlated) change in the process model parameters
3. Limits on the variation of the manipulated variable

The correlation should provide values for Kc, 7>, and Td based on values in
a process dynamic model. The general approach is to select a model structure
and determine the dimensionless parameters that define the closed-loop dynamic
response. To provide simple, yet general correlations, the process model must
have a small number of parameters. Modelling examples in Chapter 6 demon
strated that many processes can be represented by a first-order-with-dead-time
transfer function; therefore, this model structure is used in developing the tuning
correlations:

Gds)G'p(s)Gs(s)
,-es

Gp(s) = \ + xs (9.7)



Since the control response is determined by the closed-loop transfer function,
the form of the correlation is determined from this transfer function:

C V i s ) G d i s ) G d i s )
Dis) 1 + Gc(s)Gp(s) 1 + ^(1 + t^ + ^)(^TT^)

(9.8)

Every process responds with a different "speed," which can be characterized
by the time for a step response to achieve 63 percent of its final value. For a first-
order-with-dead-time process, this time is (9 + z). Dividing the time by this value
"scales" all processes to the same speed, so that one set of general correlations can
be developed. The relationships are

t ' =
t

s —e + x e + z
Substituting the modified Laplace variable for the time-scaled equation gives

C V ( s ' ) G d ( s ' )

(9.9)

Dis*)
1 + KCKB 1 +.0 1 + Tds' \ ( e-es''(e+r)

T,s'/iO + x) 9 + z J \ \+XS'/(9 + x)
(9.10)
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The resulting equation has one parameter that characterizes the feedback process
dynamics, 6/(6 + z), which we shall term the fraction dead time.

This parameter indicates what fraction of the total time needed for the open-loop
process step response to reach 63 percent of its final value is due to the dead time;
it has values from 0.0 to 1.0. For example, the base case process data for Figure
9.1 had 9 = 5 and z = 5; thus, the fraction dead time was 0.5. Note that z/(9 + z)
is not independent, because z/(9 + z) = 1 — 9/(9 + z).

Analysis of equation (9.10) also demonstrates that the controller tuning con
stants and process dynamic model parameters appear in the following dimension
less forms:

Gain = KcKp
Integral time = Tj/(9 + x)

Derivative time = Td/(9 + x)
(9.11)

These relationships are consistent with a common-sense interpretation of the feed
back controller relationships. The dimensionless gain involves the magnitude of
the change in the manipulated variable to correct for an error and should be related
to the process gain. Also, proportional mode has no time dependence. The dimen
sionless integral time and derivative times involve the time-dependent behavior of
the controlled variable and should be related to the dynamics or "time scale" of
the process.

The disturbance model is assumed to be the same as the feedback process
model; that is, Gdis) = Gpis). Noise is assumed to be present in the controlled
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variable, as discussed in Section 9.3 and defined in Appendix E. The resulting
transfer function has only one parameter that is entirely a function of the process
[i.e., the fraction dead time 9/(9 + r)]; the tuning constants, expressed in the
dimensionless forms in equation (9.11), also influence the dynamic performance.
For the control objectives and process model (with error estimate) defined in Table
9.1, the tuning correlations are developed by (1) selecting various values of the
fraction dead time in its possible range of 0 to 1 and (2) optimizing the control
performance for each value by adjusting the dimensionless tuning constants.

The results for the disturbance response are plotted in Figure 9.5a through c.
The correlations indicate that a high controller gain is appropriate when the process
has a small fraction dead time and that the controller gain generally decreases as
the fraction dead time increases. This makes sense, because processes with longer
dead times are more difficult to control; thus, the controller must be detuned. The
dimensionless derivative time is zero for small fraction dead time and increases for
longer dead times to compensate for the lower controller gain. The dimensionless
integral time remains in a small range as the fraction dead time increases.

The same procedure can be performed for the other major input forcing: set
point changes. All of the assumptions and equation simplifications are the same,
and the set point is assumed to change in a step. The resulting correlations are pre
sented in Figure 9.5d through/ The tuning constants have the same general trends
as the fraction dead time increases. The selection of whether to use the disturbance
or set point correlations depends on the dominant input variation experienced by
the control system.

The range of model errors, ±25 percent, is reasonable when all parameters are
significantly different from zero. However, when this percentage error is used, a
very small dynamic parameter would also have a very small associated error, which
may not be realistic. Because an underestimation of the error would generally lead
to a controller that is too aggressive, and because the controller for 9/ (9+x) = 0.10
is already quite aggressive, the tuning correlations are not extended lower than 0.10,
and the recommended tuning constant values are shown by the lines maintaining
the constant values for 9/(9 + x) from 0.10 to 0. These values can be improved
through fine-tuning, if required, as described later in this chapter.

The tuning correlations presented in this section were developed by Ciancone
and Marlin (1992) and will be referred to subsequently as the Ciancone correla
tions. The controller tuning method using the Ciancone correlations consists of
the following steps:

1. Ensure that the performance goals and assumptions are appropriate.
2. Determine the dynamic model using an empirical method (e.g., the process

reaction curve), giving Kp, 6, and z.
3. Calculate the fraction dead time, 6/(6 + r).
4. Select the appropriate correlation, disturbance, or set point; use the disturbance

if not sure.
5. Determine the dimensionless tuning values from the graphs for KcKp,

Ti/(6+z),tov\Td/(6 + z).
6. Calculate the dimensional controller tuning, e.g., Kc = (KCKP)/KP.
7. Implement and fine-tune as required (see Section 9.5).
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FIGURE 9.5

Ciancone correlations for dimensionless tuning constants, PID algorithm. For disturbance
response: ia) control system gain, ib) integral time, ic) derivative time. For set point

response: id) gain, (e) integral time, if) derivative time.
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The reader should recall the likely accuracy in the dynamic model when tuning a
PID controller. The gain, time constant, and dead time from empirical identification
have significant errors (20 percent is not uncommon); therefore, precise values
from the correlations are not required, because small errors in reading the plot are
insignificant when compared with the modelling errors. The use of the correlations
is demonstrated in the following examples.

EXAMPLE 9.2.
Determine the tuning constants for a feedback PID controller applied to the three-
tank mixing process for a disturbance response (step in xAB) using the Ciancone
tuning correlations.

The first step is to fit a first-order-with-dead-time model to the process, which
was done using the process reaction curve method in Example 6.4. The results
were Kp = 0.039 %A/% valve opening; 6 = 5.5 min; and z = 10.5 min. Then, the
independent parameter is calculated as 6/i&+z) = 0.34. The dependent variables
are determined from Figure 9.5a through c, and subsequent tuning constants are
calculated as follows:

KcKp = 1.2
77/(0+ r)= 0.69
Td/(0 + z) = 0.05

Kc = 1.2/.039 = 30% open/%A
77= 0.69(16) = 11 min
Td= 0.05(16) =0.8 min

The dynamic response of the feedback system to a step feed composition
disturbance of magnitude 0.80%A occurring at time = 20 is given in Figure 9.6,
which results in an IAE of 7.4. The dynamic response is "well behaved"; that is, the

100 120
Time

180 200

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0
Time

FIGURE 9.6

Dynamic response of three-tank process and PID controller with tuning
from Example 9.2.



controlled variable returns to its set point reasonably quickly without excessive os
cillations, and the manipulated variable does not experience excessive variation.
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The result in Example 9.2 shows that the correlations, which were developed for
first-order-with-dead-time plants, provide reasonable tuning for plants with other
structures as long as the feedback process dynamics can be approximated well with a
first-order-with-dead-time model. Recall that overdamped processes with monotonic
S-shaped step responses are well represented by first-order-with-dead-time models.

EXAMPLE 9.3.
When developing the correlations, the assumption was made that the disturbance
transfer function was the same as the process feedback transfer function. Evaluate
the tuning correlations for the same three-tank system considered in Example 9.2
with a different disturbance time constant.

Original disturbance transfer function:

GAs) = (55 + l)3
Altered disturbance transfer function:

Gds) =
1

i5s + \)
The altered transfer function would occur if the disturbance entered in the last

tank of the three. The resulting transient of the system under closed-loop control
is plotted in Figure 9.7. As would be expected, the response is different, with the
faster disturbance resulting in poorer control with respect to the maximum devi
ation and IAE, which increased to 8.3. The slightly poorer control performance is
the result of a more difficult process, due to the faster disturbance, being con
trolled. Note that the correlation tuning constants give reasonably good, although
not "optimal," performance even when the disturbance transfer function differs
significantly from the feedback transfer function.

EXAMPLE 9.4.
The correlations have been developed assuming that the process is linear, and it
has accounted for changes in the process dynamics through the range of model
error considered. In this example a process is considered in which the nonlinear-
ities influence the dynamics during the transient response. The three-tank mixer
described in Example 7.2 is nonlinear if the flow of stream B changes, as seen by
the fact that the time constants and gain in the linearized model depend on FB.
Determine the tuning and dynamic response for the situation in which FB changes
from its base value of 6.9 m3/min to 5.2 m3/min and returns to its base value.

The tuning for the initial condition has been determined in Example 9.2. Before
evaluating the dynamic response, it is worthwhile determining the change in the
process dynamics resulting from the change in FB, which is summarized here for
the models linearized about the base and disturbed steady states:

lA0

&T
l A l

f a t*r *A2
1 lA3

0
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FIGURE 9.7

Dynamic response of three-tank mixing process with faster disturbance
dynamics from Example 9.3.

Parameter Dependence on process
B a s e c a s e D i s t u r b e d c a s e
value [FB = 6.9) value [FB = 5.2)

Time constant, z (min)
Steady-state gain, KP (%A/% open)

V/(FB + FA)
Kv[(xA)A - (xA)B]FB/(FB + FA)2

5.0
0.039

6.6
0.051

The process model changes during the transient, and it would be proper to
correct the tuning. However, it is not possible to change the tuning for all distur
bances, many of which are not measured; thus, the base case tuning is used during
the entire transient in this example. The results are plotted in Figure 9.8. Note that
the first transient in response to a decrease in flow experiences rather oscillatory
behavior; this is because the process dynamics are slower because of the change
in operations, and consequently the tuning is too aggressive. When returning to
the base case, the tuning is only slightly underdamped, because the conditions
are close to the dynamics for which the tuning constants were determined. Even
for this significant change in process dynamics, the PID algorithm with tuning from
the Ciancone correlations provides acceptable performance. Thus, the system is
robust to disturbances of the magnitude considered in this example. However,
larger changes in process operation would result in larger model variation and
could seriously degrade performance or even cause instability. One method for
maintaining good control performance when large changes in dynamics occur is



to continually recalculate the tuning constant values based on measured distur
bances. This method is explained in Section 16.3.

s i m M s s s i s s ^ s ^
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The results of the tuning studies lead to two important observations concerning
the effects of process dynamics on tuning. First, the controller should be detuned;
that is, the feedback adjustments should be reduced as the fraction dead time of
the feedback process increases. Thus, we conclude that dead time in the feedback
loop results in reduced or slower feedback adjustments and, presumably, poorer
control. Theoretical justification for this result is presented in Chapter 10, and the
effect on feedback performance is confirmed in Chapter 13.

The second observation is that two models, the feedback process Gp(s) and
the disturbance process Gd(s), both affect the tuning; this is determined by com
paring the results for a process disturbance, which enters through a first-order time
constant, with those for a set point change, which is a perfect step. However, the
major influence on tuning is normally from the feedback dynamics, and again,
theoretical justification for this result will be presented in the next chapter. Other
studies by Hill et al. (1987) showed that the tuning is insensitive to the disturbance
time constant when Zd > r; thus, the differences between Figure 9.5a through c
and 9.5d through/ typically represent the maximum change in tuning in response
to different disturbance types.

In many control applications the derivative mode is not employed. This is the
case if the measurement signal has considerable noise. Also, the tuning correlations
demonstrate that the derivative time is very small when the fraction dead time
is small. Thus, tuning correlations for a proportional-integral (PI) controller are
provided in Figure 9.9a and b for a disturbance and set point responses. Note that
it would not be correct to use the PID values and simply set the derivative time Td
to zero, because of the interaction between the tuning constant values, although
the correlations in Figure 9.9 are close to those in Figure 9.5 because of the small
values of the derivative time in Figure 9.5.

The tuning correlations presented in Figures 9.5 and 9.9 depend on the goals
specified for the control performance. It is interesting to compare the results to a
different set of goals. One of the earlier studies using an optimization procedure was
performed by Lopez etal. (1969). In their study the goal was simply to minimize the
IAE (our goal 1), without concern for potential variation in feedback dynamics or
limitations on manipulated-variable transient behavior. Their results are presented
in Figure 9.10a and b and are applied in the following example.

EXAMPLE 9.5.
The altered mixing process in Figure 9.1, with the transfer function given below, is
to be controlled with a PI controller. Calculate the tuning constants according to
correlations in Figure 9.9a and b and 9.10 using the nominal model given below.
Calculate the transient responses to a step disturbance of 2%A in feed composition
at time = 7 for (a) the nominal feedback process and ib) an altered plant as defined
below. Note that the nominal and actual plants have the same steady-state gain
and "speed of response," as measured by the time to reach 63 percent of their
steady-state value to a step change input; they differ only in their fraction dead
time.

Controlled variable
T

Manipulated variable
T

Disturbance

400

FIGURE 9.8

Dynamic response for Example 9.4 in
which the feedback dynamics change

due to the disturbance.
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FIGURE 9.10

Lopez et al. (1969) tuning correlations for minimizing the
IAE for a PI controller in response to a disturbance.
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The tuning constant values can be calculated for each correlation from the
charts using the nominal model as

Ciancone Lopez

Kc
T,

0.9
5.2

1.5
6.0

%open/%A
min

The closed-loop dynamic responses are given in Figure 9.11a through d, and
the control performance measure of IAE is summarized as
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Dynamic responses of deviation variables. With Ciancone tuning: (a) nominal plant,
ib) altered plant With Lopez tuning: (c) nominal plant, id) altered plant.

Ciancone Lopez

IAE for nominal plant 5.9
IAE for altered plant 7.6

4.0
14.5-4- ■Ciancone gives robustness

to model errors

These results should be anticipated from the control objectives used to derive
the correlations. The Lopez correlation minimized IAE without consideration for
model error. Thus, it performs best when the plant model is known perfectly, but it
is unacceptably oscillatory and tends toward instability for even the modest model
error considered in this example. The Ciancone correlations determined the tuning
to perform well over a range of process dynamics; thus, the performance does
not degrade as rapidly with model error.



The results of this section show that simple PID tuning correlations can be
developed for processes that can be approximated by a first-order-with-dead-time
model. Selection of the proper correlation depends on the control performance
goals. If the situation indicates that very accurate knowledge of the process is
available and there is no concern for the manipulated-variable variation, the best
performance (i.e., lowest IAE of the controlled variable with PI feedback) is ob
tained using the Lopez correlations; however, the control system with these tuning
constants will not perform well if the process model has significant error or if the
measurement has significant noise. As the control performance goals are defined
more realistically for typical plant situations, the resulting tuning allows for more
modelling error and for some limitation on the manipulated-variable variation, and
the resulting correlations have a broader range of good performance. This is an
important factor for control systems that function continuously for months or years
as plant conditions change. Thus, the Ciancone correlations are recommended here
as a starting point for most control systems.
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1\ming correlations have been developed as a function of fraction dead time for a
PID controller, a first-order-with-dead-time process, and typical control objectives.
These are recommended for obtaining initial tuning constant values when the plant
situation matches the factors in Table 9.1.

It is important to recognize that no claim is made for optimality in the real world,
although an optimization method was used to determine the solution to the math
ematical problem. The Ciancone correlations simply used a realistic definition of
control performance to determine tuning. Also, while examples have shown that
the correlations are valid for different disturbance model parameters and model
errors, extrapolation beyond the defined conditions of the correlation (Table 9.1)
must be done with care.

9.5 a FINE-TUNING THE CONTROLLER TUNING
CONSTANTS
The tuning constants calculated according to any method—optimization, correla
tions, or the stability analysis in the next chapter—should be considered to be initial
values. These values can be applied to the process to obtain empirical information
on closed-loop performance and modified until acceptable control performance
is obtained. Determining modifications based on initial dynamic responses, often
termed fine-tuning, is necessary because of errors in the base case process model
and simplifications in the tuning method. A fine-tuning method is described here
for a process being controlled by a PI control algorithm. This method is easy to
perform and gives additional insight into the way the controller modes combine
when controlling a process.

After the initial tuning constants have been calculated and entered into the
algorithm, the controller's status switch can be placed in the automatic position to
allow the controller to perform its calculation and adjust the final element. Then,
the response to a set point change is diagnosed to determine whether the tuning is
satisfactory. A set point change is considered here because
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1. It can be introduced when the diagnosis is performed.
2. A simple time-dependent input disturbance—a step—is easy to achieve.
3. The magnitude can be selected by the engineer.
4. The effects of the proportional and integral mode calculations can be separated,

which greatly simplifies the diagnosis of the controller behavior.

The step response of a control system with a well-tuned PI controller is given in
Figure 9.12. The first important feature is the immediate change in the manipulated
variable when the set point is changed. This is due to the proportional mode and
is equal to KcAEit), which is equal to Kc ASP(f). This initial change is typically
50 to 150 percent of the change at the final steady state. The second feature is the
delay, due to the dead time, between when the set point is changed and when the
controlled variable initially responds. No controller can reduce this delay to be less
than the dead time. During the delay the error is constant, so that the proportional
term does not change, and the magnitude of the integral term increases linearly
in proportion to KcEit)/Tj. When the controlled variable begins to respond, the
proportional term decreases, while the integral term continues to increase. At the
end of the transient response the proportional term, being proportional to error, is
zero, and the integral term has adjusted the manipulated variable to a value that
reduces offset to zero.

The value of this interpretation can be seen when an improperly tuned con
troller, giving the response in Figure 9.13, is considered. The control response
seems slow, resulting in a large IAE and a long time to return to the set point.
Analysis of the transient indicates that the initial change in the manipulated vari
able when the set point is changed, termed the proportional "kick," is only about
30 percent of the final value, which indicates too small a value for the controller
gain. The conclusion for the diagnosis is that the control system performance can
be improved by increasing the controller gain, most likely in several moderate
steps, with a plant test at each step to monitor the results of the changes. The

Time
FIGURE 9.12

Typical set point response of a well-tuned PI control
system.
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Time
FIGURE 9.13

Example of a dynamic response of a PI control system with
the controller gain too small.

Time
FIGURE 9.14

Dynamic response of the control system in Example 9.6.

substantially improved performance of the control system with the controller gain
increased by a factor of 2.5 is shown in Figure 9.12.

EXAMPLE 9.6.
A PI controller was not providing acceptable control performance. Preliminary
analysis indicated that the sensor and control valve were functioning properly, so
a step change was introduced to its set point. The response is given in Figure
9.14. Diagnose the performance, and suggest corrective action.

Solution. The transient response is highly oscillatory, indicating a controller that
is too aggressive. The cause could be too large a controller gain, too short an in
tegral time, or both. The immediate proportional change is only about 70 percent
of the final change in the manipulated variable; therefore, the controller gain is in a
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reasonable range, is certainly not too large, and should not cause oscillatory be
havior. The conclusion is that the integral time is too short. The transient response
with double the integral time is that shown in Figure 9.12, confirming that reason
ably good control performance can be achieved by changing only the integral
time.

VA0

15i*r lA2

i*r#

EXAMPLE 9.7.
The three-tank mixing control system has been tuned initially, and the system's
dynamic response to a set point change is given in Figure 9.15a. Note that the
measured concentration experiences many small disturbances because of chang
ing inlet concentrations and flows in the process as well as measurement error.
This noisy data more closely represents empirical data from process plants than
do the ideal simulations in Figures 9.12 through 9.14. The control objectives have
two unique aspects in this example, which are different from the general objectives
considered so far but are not unusual in the process industries.

1. The downstream process is sensitive to oscillations in the concentration.
Therefore, the controlled concentration should not experience overshoot.

2. The plant that supplies component A functions better with a smooth opera
tion. Therefore, high-frequency variation in the manipulated variable is to be
minimized.

The initial tuning constants are Kc = 45% opening/%A, Ti = 11.0 minutes, and
TD = 0.8 minute. Suggest changes to the tuning constant values that will improve
the performance.

Solution. The large, high-frequency variation in the manipulated variable is
caused to a large extent by the noisy measurement and the derivative mode.
Therefore, the first suggestion would be to reduce the derivative time to zero. Next,
the controlled variable overshoots its set point, which can be prevented by making
the controller feedback action less aggressive. Reducing the controller gain will
slow the response and also slightly reduce the high-frequency variation of the ma
nipulated variable, both desirable effects. The resulting tuning constants, which
could be arrived at after several trials, are Kc = 15, Tt = 11, and Td = 0.A much
more satisfactory dynamic response—that is, one that more closely satisfies the
stated objectives for this example—was obtained with these tuning constants, as
shown in Figure 9.15£>. Note that the much smoother performance was achieved
with only a small increase in IAE, which changed from 11.6 to 12.9.

These fine-tuning examples demonstrate that

Analysis of the responses of the controlled and manipulated variables to a step
change in the set point provides valuable diagnostic information on the causes of
good and poor control performance, allowing the performance to be tailored to
unique control objectives;
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FIGURE 9.15

Dynamic responses of feedback control system in Example 9.7:
ia) initial (IAE = 11.6); ib) after fine-tuning (IAE = 12.9).

Again, we see that both the controlled and manipulated variables must be observed
when analyzing the performance of feedback control systems; complete diagnosis
is not possible without information on both variables.

9.6 m CONCLUSIONS
The starting point for feedback control consists of the control objectives, here
specified as three goals. These goals encompass the major factors in process control
performance; the specific parameters used (e.g., percent model error and limits on
manipulated-variable variation) can be selected to match a specific problem.



294

CHAPTER 9
PID Controller Tuning
for Dynamic
Performance

Control performance must be defined with respect to all important plant operating
goals. In particular, desired behavior of the controlled and manipulated variables
must be defined for expected disturbances, model errors, and noisy measurements.

A simple variable reduction of the closed-loop transfer function, based on dimen
sional analysis, can be employed in extending the optimization to general tuning
correlations. These correlations are applicable only to those systems for which
the underlying assumptions are valid: The process should be well represented by a
first-order-with-dead-time model, the model errors should be in the assumed range,
and the desired controlled and manipulated behavior should be similar to the ob
jectives stated in Table 9.1. Examples have demonstrated that the process does
not have to be perfectly first-order with dead time to achieve acceptable dynamic
responses using the tuning correlations.

A three-step tuning procedure would combine methods in previous chapters
with methods in this chapter. The first step would be to determine the feedback
process model G''Js)Gvis)Gsis) by fundamental modelling or empirical mod
elling, using either the process reaction curve or a statistical identification method.
Industrial controls are most often based on empirical models. In the second step,
the initial tuning constant values would be determined; typically the values would
be determined from the general correlations, but an optimization calculation could
be performed for processes that are not adequately modelled by a first-order-with-
dead-time model. The third step involves a test of the closed-loop control system
and fine-tuning, if necessary. The set point step change provides separate informa
tion on the proportional and integral modes to facilitate diagnosis and corrective
action.

The dynamic behavior of both the controlled and the manipulated variables is re
quired for evaluating the performance of a feedback control system.

The reader should clearly recognize the meaning of the term optimum. It is used
here to mean results (i.e., tuning constant values) that are determined so that certain
mathematical criteria are satisfied. The criteria are goals 1 to 3. Naturally, the
relationships in Table 9.1 were selected to represent the true control situation
closely for the majority of cases. However, control performance has many facets,
from safety through profit; therefore, it is sometimes difficult to condense all of the
critical factors into one measure of control performance. Even if the mathematical
objectives successfully represent the true desired performance, the results will be
satisfactory only when the parameters in the mathematical formulation specify the
desired behavior. These parameters, such as the controlled-variable measurement
noise, the expected plant model error, and the allowable manipulated-variable
variation, are never known exactly. Therefore, although the mathematical solution
is "optimum," the usefulness of the results depends on the accuracy of the input
data.



Practically, the values from the optimization or correlations are used as initial values
to be applied to the physical system and improved based on empirical performance
during fine tuning.

Remember, when tuning a feedback controller, where you
start is not as important as where you finish!
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Finally, the three tuning constants in the PID algorithm all influence the dynamic
behavior of the closed-loop system. They must be determined simultaneously,
because of this interaction.

It should be apparent that the tuning approach using optimization is not limited
to PID controllers; if another algorithm were suggested, its parameters could be op
timized by the same procedure. In fact, some results for other feedback controllers
are presented in Chapter 19.

The techniques in this chapter provide practical methods for controller tuning
that are applicable to many processes. However, they do not provide important
explanations to key questions such as

1. Why do the tuning correlations have the shapes in Figure 9.5?
2. Why can a control system become unstable, and how can we predict when

this will occur?
3. How does the controller change the dynamic behavior of an open-loop system

to that of a closed-loop system?

Methods for answering these more fundamental questions are addressed in the
next chapter.

REFERENCES
Ciancone, R., and T. Marlin, 'Tune Controllers to Meet Plant Objectives,"

Control, 5, 50-57(1992).
Edgar, T, and D. Himmelblau, Optimization of Chemical Processes, McGraw-

Hill, 1988.
Fertik, H., "Tuning Controllers for Noisy Processes," ISA Trans., 14, 4, 292-

304(1975).
Hill, A., S. Kosinari, and B. Venkateshwa, "Effect of Disturbance Dynamics

on Optimal Tuning," Instrumentation in the Chemical and Petroleum In
dustries, Vol. 19, Instrument Society of America, Research Triangle Park,
NC, 89-97 (1987).

Lopez, A., P. Murrill, and C. Smith, "Tuning PI and PID Digital Controllers,"
Instr. and Contr. Systems, 42, 89-95 (Feb. 1969).

Zumwalt, R., EXXON Process Control Professors' Workshop, Florham Park,
NJ, 1981.



296

CHAPTER 9
PID Controller Tuning
for Dynamic
Performance

ADDITIONAL RESOURCES
Other common forms of the PID control algorithm and conversions of tuning
constants for these forms are given in

Witt, S., and R. Waggoner, "Tuning Parameters for Non-PID Three Mode
Controllers," Hydro. Proc, 69, 74-78 (June 1990).

Analytical solutions for optimal tuning constant values for PID controllers
can be obtained for some continuous control systems, specifically those involving
processes without dead time. They can also be obtained for digital controllers
for processes with dead time. References for analytical methods are given below;
however, since such solutions are possible only with intensive analytical effort
for limited control performance specifications, numerical methods are used in this
chapter.

Jury, E., Sample-Data Control Systems (2nd ed.), Krieger, 1979.
Newton, G., L. Gould, and J. Kaiser, Analytical Design of Linear Feedback

Controls, Wiley, New York, 1957.
Stephanopoulos, G., "Optimization of Closed-Loop Responses," in Edgar, T.

(ed.), AIChE Modular Instruction Series, Vol. 2, Module A2.5, 26-38
(1981).

Background on mathematical principles and numerical methods of optimiza
tion can be obtained from many reference books, for example:

Reklaitis, G., A. Ravindran, and K. Ragsdell, Engineering Optimization, Meth
ods and Applications, Wiley, New York, 1983.

Many other studies have been performed on optimizing time-domain control
system performance, for example:

Bortolotto, G., A. Desages, and J. Romagnoli, "Automatic Tuning of PID
Controllers through Response Optimization over Finite-Time Horizon,"
Chem. Engr. Comm., 86, 17-29 (1989).

Gerry, J., "Tuning Process Controllers Starts in Manual," InTech, 125-126
(May 1999).

The diagnostic fine-tuning method described in this chapter is limited to step
changes in the controller set point. A powerful method for diagnosing feedback
controller performance is based on statistical properties of the controlled and ma
nipulated variables. The method, which establishes the approach to best possible
control and identifies reasons for poor performance, is given in

Desborough, L., and T. Harris, "Performance Assessment for Univariate Feed
back Control," Can. J. Chem. Engr., 70, 1186-1197 (1992).

Harris, T., "Assessment of Control Loop Performance," Can. J. Chem. Engr.,
67, 856-861 (1989).

Stanfelj, N., T. Marlin, and J. MacGregor, "Monitoring and Diagnosing Con
trol System Performance—SISO Case," IEC Res., 32, 301-314 (1993).



An alternative method of fine-tuning is based on shapes or patterns of response
to disturbances. Good and poor responses are identified, and tuning constants are
altered accordingly. This method has been applied in an automatic tuning system.
For an introduction, see
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These questions reinforce the key aspects of dynamic behavior that are considered in
defining control performance and how the performance goals and process dynamics
influence the controller tuning.

QUESTIONS
9.1. Given the results of the process reaction curve in Figure Q9.1, calculate

the PI and PID tuning constants. The process was initially at steady state,
and the manipulated variable was changed in a step at time = 0 by +1%.

1.50
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-0.50
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Time, t

FIGURE Q9.1

9.2. Suppose that control goals different from those in Table 9.1 are specified for
the tuning correlations. Predict the effect on the tuning constant values—
that is, whether each would increase or decrease from the correlation values
from Figure 9.5—for each set of goals.
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id) The only goal is to minimize the IAE for the base case model.
ib) The goals are to minimize IAE for ±25% change in model parameters,

without concern for the manipulated-variable variation,
(c) The goals are to minimize IAE for ±50% change in model parameters,

with concern for the manipulated-variable variation—unchanged from
Table 9.1.

9.3. Confirm the correlation between the linearized model parameters and the
process operating conditions in Table 9.3. Calculate the change in flow rate
for the specified range of model parameters.

9.4. The dynamic responses shown in Figure Q9.4 were obtained by introducing
a step set point change to a PID controller. The dead time of the process
is only a few minutes. For each case, determine whether the control is as
good as possible and if not, what corrective steps should be taken. Note
that the diagnosis of this data would require an exact specification of the
control objectives. Use the general objectives considered in Table 9.1 and
be as specific as possible regarding the change to the tuning constants.
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9.5. The tuning constants for the three-tank control system are given in Example
9.2. Predict how the optimum tuning constants will change as the following
changes are made to the control system. The analysis should be based on
principles of process dynamics, tuning factors, and tuning correlations. Be
as specific as possible without resolving the optimization problem for each
case.
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i b ) T h e v o l u m e o f e a c h t a n k i s r e d u c e d b y a f a c t o r o f 2 . Q u e s t i o n s
ic) The temperature of stream B is increased by 20°C.
id) The set point of the controller is increased to 3.5 percent of component

A in the third-tank effluent.
ie) Substantial high-frequency noise is present in the measurement of the

controlled variable.

9.6. Given the following process reaction curves, for which of the processes is
it appropriate to use the general tuning charts in Figure 9.4a through /?
Explain your answer for each case.
id) Figure 3.7 (tank 2 concentration)
ib) Figure 3.18
ic) Figure 5.5
id) Figure 1.5 (Appendix I)
ie) Figure 13a, 13b
if) Figure 8.4a
ig) Figure 5.17

9.7. Explain in your own words why the dimensionless parameters are
(a) KCKP.
(b) Tj/(9 + z).
(c) Td/(9 + z).

9.8. Derive the closed-loop transfer function for the three-tank mixing process
using the analytical (third-order) linearized model in response to a change in
the composition in the A stream from Example 7.2. Perform a dimensional
analysis using the method demonstrated in Section 9.4, determine the key
dimensionless parameters, and explain the form of tuning correlations for
this model structure and how you would develop them.

9.9. For one or more of the following processes, calculate the PI controller
tuning constants by two correlations: Ciancone and Lopez. Compare the
expected control performance for both correlations in response to a step
change in the controller set point. Under which circumstances would each
correlation give the best constants?
(a) Question 6.1
(b) Question 6.2
(c) CSTR in Section 3.6
(d) Example 5.1
(e) Example 1.2 (Appendix I)
if) Example 6.4

9.10. The two series CSTRs in Example 3.3 with the reaction A -> products
-rA = 6.923 x 10V5000/rCA

with T in K, has its outlet concentration of A, CA2, controlled by adjusting
the inlet concentration Cao- The temperature varies slowly between 290 and
315 K. Would this temperature variation require a significant adjustment
in controller tuning? Justify your answer with quantitative analysis.



300 9.11. The three cases used in the tun ing opt imizat ion are se lected to span the
mmme&Mmmmm range of expected plant operation (i.e., the range of plant model parame-
chapter 9 ters) . Suppose that the control engineer knew what percentage of the t ime
PID Controller Tuning that the plant will operate at various operating conditions in the range. Sug-

Performance Sest a modificat ion to the opt imizat ion method, specifical ly the object ive
function, that would include the information on time at each operation in
determining the optimum tuning constants.

9.12. The tuning optimization method integrates the equations over a finite time
to evaluate the IAE.
(a) Write the equations that could be used to evaluate the IAE from the

simulation results.
(b) Write the equations for the ISE and ITAE that could be used with

simulation results. For the ITAE, carefully define when the integration
begins (i.e., where time equals zero).

(c) Examples in this chapter demonstrated that a poor choice of tuning
constant values could lead to an unstable system, with the controlled
variable diverging from the solution. What is the theoretical value of
the IAE for an unstable control system? How would the optimization
system described in this chapter respond if an intermediate set of tuning
constants led to an unstable response?

(d) Determine the theoretical minimum IAE for controlling an ideal first-
order process with dead time in response to a step disturbance.

(e) If an analytical expression were available for CV(f), it could be used in
tuning. Determine the closed-loop transfer function for a PI controller
and a first-order-with-dead-time process, Gp(s) = Kpe~6s/(xs + 1).
For a step set point change, SP(s) = ASP/s, solve for CV(^) and
invert the Laplace transform to obtain CV(t), if possible.

9.13. Control performance goals are defined in Table 9.1. Propose at least one
alternative measure for every entry in the column labeled "Used in This
Chapter." Each should involve a different performance measure and not be
simply a different numerical value. Discuss the advantages of each entry,
the original, and your proposed alternate.

9.14. Tuning constants for a PI controller for the following process are to be
determined.

7 5 e ~ 2 3 s 1 0 0
G'(s)Gds)Gs(s) = —— Gd(s) =8 . 5 ^ + 1 5 ^ + 1

The control objectives are essentially the same as used in this chapter.
A colleague has calculated several sets of values for the controller gain
and integral time. Determine which of these sets of constants, if any, is
acceptable and explain why or why not.

Tuning Case A Case B Case C Case D
Kc 12 12 0.3 0.3
T, 6 1 6 1
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(a) Discuss the advantages of using a set point change response rather than Questions

the disturbance response.
(b) Prove the relationships given in Figure 9.12.
(c) Demonstrate why the initial change in the manipulated variable is about

50 to 150 percent of its final value. Does this tuning guideline depend
on the tuning goals and correlations used?

9.16. Figure 9.2 gives the controlled variable behavior for various values of the
controller gain. Sketch the behavior of the manipulated variable you would
expect for each case and explain your answers. Also, sketch the variable
given here as a function of the controller gain Kc, and explain your answer.
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