
Analysis
of Digital

Control Systems
L.1 n INTRODUCTION
Most feedback control in the chemical process industries is currently implemented
using digital computers. While most key features of control engineering are the
same for continuous and digital control, some unique features of digital control
should be considered. Therefore, the basic concepts of digital control were intro
duced in Chapter 11, and digital forms of common control algorithms are provided
in Chapters 11 (PID), 12 (filtering and windup), 15 (feedforward), 21 (decoupling),
and 23 (DMC). The reader is encouraged to review this material, especially the
introductory material in Chapter 11, before proceeding to study this appendix.

In this appendix, we present rigorous methods, based on the z-transform,
for analyzing a digital control system. As shown in Figure L.l, the z-transform
enables the engineer to combine a continuous process and digital controller into
one transfer function model. As with continuous systems, we can use the transfer
function model to determine important properties of the system, such as its stability,
final value, and frequency response. This appendix begins with an introduction
to z-transforms for digital systems, which are analogous to Laplace transforms
for continuous systems. Then, the application of z-transforms for control system
analysis is presented. Finally, these analysis methods are applied to determine key
results for PID and IMC closed-loop systems.

L.2 Q THE Z-TRANSFORM
The digital controller has no information on the continuous controlled variable;
it has only sampled values of the controlled variable. Therefore, our analysis
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FIGURE L.1

Schematic of how z-transforms are used to combine sampled
values from a continuous process and digital calculations.

approach should represent this situation. The z-transform is defined for a series of
values as follows:

z-transform: Z(F0. Yx, Y2,...) = J^YnZ-n (L.1)
n=0

The capital "Z" denotes the z-transform, and Y„ indicates the values of the sampled
variable "Y". When we consider the z-transform of a continuous variable (such as
flow or temperature), we will mean the z-transform of the sampled values of the
variable.

Important properties and conventions for the z-transform are summarized in
the following.

1. The sampled values for a variable are assumed zero for n < 0.
2. The "z" variable can take complex values.
3. In this presentation, the z-transform of the sampled variable Yn is designated

by its argument, as in F(z).
4. The z-transform is a linear operator, because it satisfies the additivity and

proportionality criteria
Z{aYx+bY2) = aZ{Yx} + bZ{Y2)

5. A table of z-transforms and their inverses is provided in Table L. 1. These pairs
are unique.



6. The z-transform carries no explicit information about its sample period, al
though the period is known from the data collection procedure.

We assume that the sample period (Af) is constant for a set of sampled variables.

This assumption is valid for the vast majority of process control systems. To
achieve a constant execution period, the control computer must have excess
computing capacity. One method for ensuring excess capacity is to limit the
number of algorithms executed per second by one processor. Also, the soft
ware must ensure that a user-written program does not exceed a maximum

TABLE L.1

Table of z-transform pairs.

No. Gis) Giz)
1 1 (impulse)

2 - (step or constant)
s

3
1

s + a

4 1

5 1
is+a)is + b)

6 1
is+a)2

7 s +aQ
is+a)is + b)

8

9

1
s2+a2

1
sis+a)is+b)

10
s + a0

sis + a)is + b)

11 s +a0
sis + a)2

12 Gis)e~e*

11

\ - z - I

1
\ _ e-a{bt)z-\

Atz~]
(1-z-1)2

1 1 1
b - a

(A/)e

\ _ e-a(At)z- \ \ _ e-b{At)z- \

- « ( A / ) - - l

(1 - e-a(At)z-\)2

1
b - a
1

(«o - a) ia0 - b)
1 _ e-a(6.t)z-\ \ _ e-b(bt)z-\

z~] sin(aAr)
a 11 - 2z"' sin (a At) + z~2 _

1 1+ + 1
abi\-z~x) aia - b)i\ - e-a^'h~l) bib - a)(l - *-*<*'>z~l)

a Q , ( a 0 - a ) , ( a 0 - b )+ +
abi\-z~[) aia - b)i\ - e-«A'h-]) bib - a)i\ - e-h^z~l)

1 1 i a / a 0 ) i a 0 - a ) i A t ) e - a ( A , ) z - 1 1fo r i
fl 2 L i - z - \ ( j _ e - a ( A , ) z - l ) ( 1 _ 0 - « ( A f ) z - 1 ) 2

G(z)z~' where / = 0/Af = integer

Notes: Constants a, b, and «o are real and distinct.
Ar is the sample period.
s is the Laplace variable.
The z-transform does not include a zero-order hold.
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allowable computing time; limited computing times are enforced by a moni
toring program that interrupts a program exceeding the maximum time.

With a constant sample period, the sampled data can be represented as

Yn = Yin At)
where n is the sample number and At is the sample period.

7. To reiterate, no information on intersample values is available from the
z-transform.

EXAMPLE L.1.
Sampled values of a temperature are provided. Determine the first few terms in
the z-transform of this sampled variable. The sample period, At = 10 seconds.

TiO) = 310

TiAt) = 312

T(2At) = 315

Ti3At) = 318

The sampled values can be substituted directly into equation (L.1) to give the
following:

. - 2ZiTinAt)) = 310 + 312z_1 + 315z~z + 318z~J +
m

EXAMPLE L.2.
Use the data given in Example L.1 to develop the z-transform of the temperature
with a sample period of 5 seconds.

The data has no information about intersample behavior. Therefore, we cannot
determine the sampled values at 5, 15 seconds. We cannot determine the
z-transform for 5-second samples from the data provided.

Next, we will evaluate the z-transforms for the sampled values of several
common variables.

UNIT STEP INPUT. U in At) = 1 for all n > 0

ZiUinAt)) = Z(l, 1,1,1,...) = J^iDz-" = XV"
M=0 «=o

(L.2)

Using the relationship that YlT=oz~" = 1/(1 - z"1) for |z| > 1, we obtain for
following result:

ZiUinAt)) =
1

1-z-1 (L.3)

UNIT IMPULSE, y (0) = 1 and Y in At) = 0 for n > 0

Z(l, 0,0,0,...) = (l)z-° -I- Oz"1 + Oz"2 • • • + = 1 (L.4)



RAMP. Yit) = at so that Yin At) = an At
0 0

Z(0, a At, 2a At, ...) = ^ianAt)z~"
/1=0

= 0 + ia At)z~{ + i2aAt)z~2 + i3aAt)z~3 +

= iaAt)z-li\+2Z-l+3Z-l + '--)

iaAt)z~lZ iO,aAt ,2aAt , . .<) = ± ^(1 -z-1)2
The last step relied on the following relationship:

1

(L.5)

1-T-2Z-1+3z_2+4z-3 + ---+ =
(1-z-1)2

for \z\ > 1

TRANSLATION (DEAD TIME). yinAt-iAt) where/ = integer number
of samples in the dead time

oo

ZiYinAt - iAt) = J^ Yin At - iAt)z~" substituting k = n-i
00

= ]T y(*A/)z"(*+/) with YikAt) = 0 for k > 0

oo

= Y,YikAt)z-'z

oo

= z"' D YikAt)z

.-/ ~-k

, -k

)t=0

ZiyinAt-iAt) = z~'Yiz) (L.6)

Therefore, the z-transform of a variable with dead time is the product of z to
the power of —/, (where / is the number of samples in the dead time) and the
z-transform of the function without dead time. Note that this development relied
on the dead time being an integer value.

In this appendix, we will assume that the dead time is an integer multiple of the
sample time, i.e., i = 0/At — integer.

For extensions when the dead time is not an integer, see material on modified
z-transforms in Smith (1972).

DIFFERENCE EQUATIONS. Calculations performed for control (including
controller, filter, and models) take the form of difference equations in digital com
puters; therefore, we need to take the z-transform of such equations. The control
equation uses current and past sampled values of variables; naturally, future values
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are not available. The following expressions give the z-transform for current Yin)
and past (!«_/) values of a sampled variable:

ZiYn) = ZiYinAt), YUn - \)At), Y«n - 2)At),...) = Yiz) ih.la)

ZiYn-i) = ZiYHn-i)At), YUn-i - \)At), YUn-i-2)At),...) = z~lYiz)
iL.lb)

We will be deriving controller calculations in the form of z-transforms and would
like to implement these controllers in a digital computer as difference equations.
Therefore, we will be applying the inverse of equations (L.la) and (L.lb), for
example,

Z",(7(z)) = Yn Z-\z-lYiz)) = Yn.t
From the above expressions we see why z"1 is similar to the backward shift oper
ator, because z~' indicates that the variable in a difference equation is i samples
"back" from the current variable.

INTEGRAL. The integral mode in the PID controller is calculated in the digital
computer using a numerical approximation based on sampled values. As described
in Chapter 11, the discrete form of the integral mode using rectangular integration
is given by the following expression, with E representing the error between the
set point and measured controlled variable,

f Eit)dt*y\iAt)E
J q / = o

We can take the z-transform of the expression, applying the expressions for the
difference equations to give

Z (^0£; ) = (AO£(z) |>-''
k/=o /=o

For large values of n, X^"=0z ' % 1/(1 — z l) giving the expression for the z-
transform of rectangular integration.

i * ™ - ^i&t)Eiz2
i (L.8)

DERIVATIVE. The derivative mode in the PID controller is calculated in the
digital computer using a numerical approximation based on sampled values. As
described in Chapter 11, a common discrete approximation of the derivative mode
is given by the backward difference, with CV representing the measured controlled
variable

cv„-cv„_,(dCV\
\ dt A=«Ar At

The z-transform can be evaluated to yield the z-transform of the derivative.

z(ĉ -cv̂ __i.(Cva)_z.,CVW) = ,1-gjCV(j) (L9)



FIRST-ORDER DIGITAL FILTER. A first-order filter can be used to reduce
noise in a measurement prior to the control calculation. The digital filter discussed
in Chapter 12 is a discrete form of the continuous filter and is repeated below for
X as the input and Y as the output, with the filter time constant, xp.

Yn = aYn-x + (1 - a)Xn with a = e~At/T
The z-transform of this difference equation gives

Yiz)=aZ-lYiz) + i\-a)Xiz)
d - « )

( 1 - Q f z - ' )
Xiz)

(L.10)
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FINAL VALUE THEOREM. The final value of the error is important, because
if it is zero, the control system returns the controlled variable to its set point after
a disturbance or set point change. Thus, we introduce the final value theorem
that provides a direct manner for evaluating the final value of a sampled variable
from its z-transform. We begin by stating the theorem and proceed to prove the
expression.

lim YinAt) = lim (1 - z_1)r*(z) (L.11)

= lim(l -z~l)Y^YinAt)z~n
z ~ * « = o

oo

= lim J^iYinAt) - z~]YinAt))z~"
«=o

00

= lim T Y<(0) + iYX'At) - Y(6))z~l + iYi2At) - Y^kt))z~2 +7 — * I ■ * . .z->\ n=6
= lim YinAt)

n-rOQ

The last step results from the cancellation of all but the last term in the series.
Note that this expression is valid only when the system in stable, so that the terms
Yin At) approach the same value as the sample number n becomes large.

INVERSE z-TRANSFORM. We would like to evaluate the inverse of the z-
transform to determine the sampled, time-domain values of the variable. We will
present two methods in this appendix: (1) long division to reinforce the principles
and (2) partial fractions to provide the basis for important generalizations.

Before covering these methods, we note the following important feature of
z-transforms:

The z-transform is always a ratio of two polynomials in z.
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The structure of the Laplace transform was more complex because of the dead
time ie~9s)', however, the dead time in digital systems (z-/) simply increases the
order of polynomials. Also, because real processes involve differential equations,
the order of the denominator is greater than that of the numerator (after the dead
time is factored out). The methods of inversion take advantage of the polynomial
structure of the z-transforms.

One method of inverting a z-transform is long division, which provides a series
expression in powers of z-1. The sampled values can be evaluated by comparing
the terms in the series with the definition of the z-transform.

EXAMPLE L.3.
Evaluate the inverse z-transform for the following expression, and evaluate the
final value.

y W = ^w l - 1 .8z - ' +0 .8z -2

The expression can be expanded by long division to give

0.6Z"1 + 1.08z"2 + 1.46z~3 + 1.77z-4
1 -l.Sz^+O.SOz-2 - i0.6z

The first few sampled values can be determined by comparing this result with the
definition of the z-transform as shown in the following:

00

Yiz) = ]T YinAt)z~n = Oz"0 + 0.6z"' + 1.08z"2 + 1.46z"3 + 1.77z-4 + • • •

Therefore, F(0) = 0, YiAt) = 0.60, Yi2At) = 1.08, Yi3At) = 1.46, and Yi4At) =
1.77. The final value can be determined by applying the final value theorem.

lim(l-z_1)z-*\ ( -
0.60z- l

l.Sz-'+O.SOz- 2 ) = i ™ ( i - , r ' ) (
0.60z- l

(1-r *-•)(!-0.8znj) = 3.o

The second method for inverting z-transforms uses partial fractions to rep
resent a complex expression by the sum of several simpler expressions. Each of
the simpler expressions can be inverted using Table L.1 or by long division. Thus,
we can invert essentially any z-transform of a realistic process variable using this
approach. In addition, we can easily determine the stability of a variable.

The partial fraction method is summarized in the following:

Yiz) =
Niz) + C2
D i z ) 0 - p x z - 1 ) i \ - p 2 z ~ x )

+ (L.12)

where Y{z) = z-transform of the output variable
Niz) = numerator polynomial in z of order m
Diz) = denominator polynomial in z or order n

Pi = roots of the equation Diz) = 0, also called the poles
(distinct roots assumed here)



The partial fractions method requires that the order of the denominator be
greater than the order of the numerator, i.e., n > m, after the dead time is factored
out. This requirement will be satisfied by models encountered in process control,
after the dead time is temporarily removed. Initially, the C/'s are unknowns in
equation (L.11) and must be determined so that the equation is satisfied. The partial
fraction expansions and the resulting Heaviside expansion formula are presented
in Appendix H for evaluating the constants, so the details are not repeated here.
Suffice to say that the same procedures can be applied to evaluate the constants C,
here as well.

One important stability result can now be presented, because equation (L.12)
shows that all z-transforms can be represented as a sum of simpler expressions.
Let us expand one of the terms in Equation (L.12) by long division.

YinAt) = C{Z' U-P/r-7 C/Z-'O +ptz~l +p;2z-*+p;\-x + •)
(L.13)

By comparing the equation above with the definition of the z-transform, the sam
pled valued can be determined to be

7(0) = Ch YiAt) = CiPi, Yi2At) = CiPl Yi3At) = dp],...
Clearly, the sampled variables will be stable if p-t < 1.0 and will be unstable
(increase toward ±oo) if p, > 1.0. We generalize this result to a test for stability
of a sampled data variable in the following:
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• Determining the stability for a z-transform with distinct roots

Stable \pi\ < 1.0.
Unstable |p,| > 1.0

• For repeated and complex roots, the result is similar:

Stable |/7/| < 1.0
Unstable \p{\ > 1.0

The roots of higher-order polynomials are difficult to evaluate by hand calcu
lation, but numerical methods are available and standard algorithms can be used
in software such as MATLAB™.
EXAMPLE L.4.
Determine whether the following variable is stable:

0.6z"'
T(z) =

0.6z"
1 - 1.8z"' +0.8z"2 (1 -z",)(l -0.8z-')

The roots of the denominator are 1.0 and 0.80. Since they are distinct and less
than or equal to 1.0, the variable is stable. Note that this is the variable considered
in Example L.3, where the final value was determined. The application of the final
value theorem is valid only for stable variables.
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In continuous systems, the roots of the polynomial in the denominator of the
Laplace transform provided information about the damping of the variable in the
time domain. This is true for the roots of the denominator of the z-transform as
well. Let us evaluate the first few sampled values for some example z-transforms,
and then we will generalize the results.

Root

First six sampled \ral l ies

z- t ransform O 1 2 3 4 5 C o m m e n t s

1 / ( 1 - l . l z - ' ) 1.1 1.0 1.1 1.21 1.33 1.46 1.61 Overdamped,
unstable!

1/(1 -0.9z"') 0.90 1.0 0.90 0.82 0.73 0.66 0.59 Overdamped, slow
response

1/(1-O.Sz"1) 0.50 1.0 0.50 0.25 0.125 0.063 0.032 Overdamped, faster
response

1/(1+ 0.9Z"1) -0.90 1.0 -0.90 0.81 -0.73 0.66 -0.59 Highly oscillatory,
ringing

1/(1 +l.lz-1) -1.1 1.0 -1.1 1.21 -1.33 1.46 -1.61 Oscillatory, unstable!

Note that the real pole greater than +1.0 is unstable. Also, the positive real poles
with magnitudes less than 1.0 give stable, overdamped responses. Finally, poles
with real parts near —1.0 result in highly oscillatory responses. If the magnitude
is less than 1.0, the oscillations damp out; this is behavior is termed ringing. If the
magnitude of the pole is greater than 1.0, the response is unstable.

The results on stability and damping are often summarized in graphical dis
plays of the roots of the denominator in which the real and complex parts of the
roots are plotted as shown in Figure L.2. Therefore, the unit circle is plotted for
easy reference, since roots inside the unit circle yield stable performance. The
following guidelines are often used:

• Stable systems have all roots of the denominator (the poles) within the unit
circle. Any root outside of the unit circle results in instability.

• Roots near the origin represent faster dynamics than roots far from the origin,
i.e., near the unit circle.

• Roots with real parts near —1.0 result in highly oscillatory, ringing behavior.

Rules regarding "good" pole locations have been suggested (e.g., Franklin
et al., 1990), but these rules are limited to second-order systems with a constant
numerator term. As we complete the presentation in this appendix, we will see
that realistic systems have terms (powers of z) in the numerator as well as the
denominator, and systems can be of much higher than second-order. Therefore,
analysis of the dynamic behavior of digital control (beyond the general guidelines
above) should be performed using dynamic simulation, which is straightforward
for linear systems.
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Poles with negative
real parts lead to
ringing

Real

Poles with magnitude
greater than 1.0 (outside
the unit circle) lead
to instability

FIGURE L.2

The roots of the z-transform denominator plotted in the complex plane. If all roots
are inside the unit circle, the sampled values are stable.

L.3 m METHODS FOR ANALYZING DIGITAL CONTROL
SYSTEMS
In this section, we introduce methods for analyzing linear, closed-loop digital
control systems. As with continuous systems, the analysis is based on transfer
function models and block diagrams, and the results are the three key features of
a linear system that can be determined without complete solution of the transient
response, stability, final value, and frequency response. We begin by defining the
transfer function for input X and output Y.

Methods for
Analyzing Digital
Control Systems

Transfer function: Giz) = Yjz)
Xiz) (L.14)

The following assumptions are associated with the transfer function:

1. The initial conditions for X and Y are zero. Building models in deviation
variables from an initial steady state easily satisfies this condition.

2. The samples of both variables are at the same period, are synchronized, and
are instantaneous. These assumptions are valid for essentially all chemical
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processes, because electronic analog-digital conversion and signal sampling
devices are very fast in comparison to the dynamics of the process equipment.

Some properties of the transfer function are stated here.
id) The transfer function is a linear operator.
ib) The roots of the denominator are the poles and indicate the stability of the

variable,
(c) The steady-state gain of the transfer function is K = lim Giz), when Giz) is

s t a b l e . z - >
id) Let us set the input variable to a unit impulse. From equation (L.4), X(z) =

1.0, so that Yiz) = Giz) = output response to a unit impulse input. Thus,
the transfer function is equivalent to the z-transform of the sampled output
responding to a unit impulse.
The next example shows how the transfer function for a digital calculation is

found by taking the z-transform of its difference equation.

EXAMPLE L.5.
Determine the transfer function for the digital PID controller. The discrete equation
executed in the digital computer was derived in Chapter 11 and is repeated here.

Note that the equation is in deviation variables. The z-transform of the equation
can be taken using the relationships in equations (L.7) and (L.8).

mv'« = *<(1+£t̂ )£' iz)

This can be rearranged to form the transfer function, with the prime dropped by
convention, because the transfer function is always in terms of deviation variables.

MVfc)PI controller: <»*-!g--(-+h±) (L15)

The transfer functions for the following controllers can be derived by similar de
velopment:

MVfc)
P-only controller: Gcfc) = -^- = Kc

PID controller: Gdz) =

Eiz)

MVfc)
Eiz)

= Kc[l + ^-±- + ^(1
r, l - z -1 a /u

(L16)

-z-1)] (L17)

FIGURE L.3
Dynamic response of a zero-order hold
to an input of magnitude 1.0.

Now we turn to modelling the sampled values from a continuous process.
As explained in Chapter 11, the signal from a digital controller is converted to
a continuous signal in a digital-to-analog (D/A) converter, and the analog signal
is held constant between samples by a zero-order hold. The time behavior of a
zero-order hold is shown in Figure L.3, which shows that the value is unchanged
over the first At after the digital controller has calculated the output value, and
then the zero-order hold decreases to zero for the past controller output. Recall



that the digital controller produces an updated controller output, so that the signal
to the valve changes immediately to the new value of the controller output. The
dynamic behavior of a sampled system is given in Figure L.4 to clearly show the
sampled and continuous variables.

The zero-order hold has the time behavior of a pulse function. The Laplace
transform of a pulse function is derived in equation (4.9) and is repeated in the
following, with C = At so that the integral is 1.0, as shown in Figure L.3.

Zero-order hold: His) =
1 - e-iAt)s
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The symbol His) is used for consistency with other publications.
Next, we proceed to determine the transfer function model of the system

in Figure L.4, which represents the continuous components of a digital control
system, along with the interfacing components (A/D, D/A, and hold). The Laplace
transform of the zero-order hold with a series process is given in the following:

His)Gis) - i^=) Gis) = (1 - e~iAt)s) (m
The term e~iAt)s is the Laplace transform of a dead time of duration At. Thus, the
z-transform of e~{At)s is the unit dead time z_l, that is, Z(e~(A')A) = z"1. Taking
the z-transform of the equation above gives

Thus, the z-transform of the series hold and process can be evaluated and using
equation (L.18). The term ZiGis)/s) can be determined using Table L.1. It is
important to note that in general, HGiz) ^ Hiz)Giz)! Now, let us consider a few
examples.

From
digital sampler
computer

Zero order
hold

Continuous
process

sampler
To
digital
computer

\ His) Gpis)

FH

oooo
0 0 o o

oooo _r o°°ooo

V ^ j . , _
V

Discrete
signals

Continuous signals Discrete
signals

SURE L.4

Schematic of continuous and discrete (digital) signals for digital
control of a continuous process.
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EXAMPLE L.6.
Determine the transfer function for the sampled heat exchanger in Example 3.7
with a sample period of 15 seconds (0.25 minute).

The model for the heat exchanger temperature as a function of the coolant
flow rate is derived in Example 3.7 and repeated here.

™_cw_ -33-9 with time in minutes
F d s ) v " ' \ \ . 9 s + \

The transfer function for the sampled system with zero-hold is given in the following:

The z-transform is evaluated using entry 5 in Table L.1 (with K = 33.9, a = 0, b -
1/t) to give

^ - - i >HGiz) = (1 -'z-l)K?'- (1 - e-L"x)z-1 -0.705z- l

,<'bi\ t'z-')0 -e-"lxz-x) (1 -0.979Z"1) (L.19)

We can determine that the system is stable because the denominator of the transfer
function has a root at 0.979 < 1.0.

^

£ = L

CD ~ ^

FB»FA

EXAMPLE L.7.
Determine the z-transform for the sampled mixing process with dead time in Chap
ter 9 with a sample period of 1 minute. Here, we will consider the process and hold
without control.

The process model is repeated here

A i s ) \ . 0 e ~ 5 *= Gis) = with time in minutes
v i s ) i 5 s + 1 )

The transfer function for the sampled system with zero-order hold is given in the
following:

m = „-,.,; (32) = „-,-,* (J£L). a-.-V.z^)
The dead time is 5 sample periods; i = 9/At = 5/1 =5. The z-transform is
evaluated using entry 5 in Table L.1 (with K - 1, a = 0, and b = 1/t) to give

1 ( 1 _ e - * ' / r ) z - l 0 . 1 8 U " 6
HGiz) = (1 ^'-,)^5(wvl)(1_e_A,/T2_1) - j.o.Slfc-' (L20)

Now that we can determine transfer function models for the digital calculations
and the continuous process with hold, we can combine these transfer functions
to describe the closed-loop behavior. As with continuous systems, we will use
block diagrams to derive the overall model, and we will apply the same rules
and procedures in block diagram manipulation. We consider the block diagram in
Figure L.1, in which the final element and sensor have been combined with the
process in Gpis). The closed-loop transfer function for the system is given in the
following:



CVfc) HGPiz)Gdz)
SPfc) 1 + HGpiz)Gdz) (L.21)

EXAMPLE L.8.
Determine the transfer function for digital PI control of the stirred-tank heat ex
changer in Example L.6 and evaluate key aspects of the performance. (Note that
this is the same closed-loop system considered in Example 8.7 for continuous
control.)

The closed-loop transfer function is determined by substituting for HGpiz)
and Gciz) in equation (L.21). The general forms of the transfer functions are given
in the following:

First-order process
KPi\ -e-A'/r)z-'

»G>«> = "\-e-Wz-'

PI controller

c'w-*<(,+£t^f)
Substituting the individual transfer function models into equation (L.21) gives the
following transfer function, with B = e~*'/T used to simplify the notation:

^ ( l - 5 ) z - ( l + ^ T - l F T )
CVfc)
SPfc)

1 - Bz~l

K p K d X - B f c - i ^ j J - )
1 +

\ - B z - l

The stability of the system can be determined by evaluating the roots of the char
acteristic equation, which can be set equal to zero and rearranged to give the
following:

- i0=1 + (-(1 + B) + KpKci\ - B)i\ + Af/77))z- +[B- KpKc0 - B)]z~*

This equation can be multiplied by z2 to give the following quadratic equation to
be solved for the roots:

0 = z2 + (-(1 + B) + KpKd\ -B)i\+ At/Ti))z + [B- kpKci\ - B)] (L.22)

The parameters for this problem are (with the tuning from Example 8.7)

Kp = -33.9 K/(m3/min) Kc = -0.059 (m3/min)/K
r = 11.9 min T, = 0.95 min At = 0.25 min

For the parameters in this example, the roots of the characteristic equation are
0.98±0.06y, which have a magnitude less than 1.0; therefore, the system is stable.

EXAMPLE L.9.
Evaluate the stability of the digital heat exchanger control system with PI controller
and tuning from Example L.8 with different execution periods.

The stability can be determined by evaluating the roots of the characteristic
equation; all roots within the unit circle, i.e., having magnitudes less then 1.0,
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988 indicate stabi l i ty for step-type inputs. The character ist ic equat ion was determined
^mmm^dmm^^m in Example L .8 and is repeated be low.
APPENDIXL 0 = z2 + ( - ( 1 + B ) + KpKc i \ - B )U + A t /T, ) ) z + [B - KpKcH - B ) ]
Analysis of Digital
Control Systems The parameters At and B — e~A,/T appear in the equation, so that changing the

execution period (AO changes the roots of the equation. Numerical results are
summarized below for the parameters in this example.

Execution period,
At (min)

Roots of the characteristic
equation (min-1)

Maximum magnitude
of root Stability

0.25 0.98 ±0.06./ 0.98 Stable
1.0 0.19 ± 0.36 j 0.87 Stable
2.0 0.44 ±0.587 0.73 Stable
3.0 -0.38 ±0.57./

0.156,-1.009
0.68 Stable

3.925 I 1 . 009 > 1.0 Unstable |

The pole location begins in the stable and well-damped region, and as the
execution period increases (with tuning unchanged), the poles move toward the
ringing region (negative real parts) and ultimately to instability (outside of the unit
circle). This rigorous analysis is consistent with the simulation studies and guide
lines presented in Chapter 11.

Finally, we would like to evaluate the frequency response of a linear, digital
system. Recall that the frequency response is the behavior of the output for a sine
input after sufficient time for initial transients to damp out. For a linear system,
the output behavior will be a sine with the same period as the input. The frequency
response of a digital system can be determined by using the relationship that
both z_l and e~(At)s represent a unit dead time. Therefore, z_1 can be replaced
with e~iAt)s and the Laplace variable is) can be set to jco, with co being the sine
frequency (Franklin et al., 1990). This approach is now applied to a digital system.
EXAMPLE L.10.
Determine the frequency responses for two first-order filters; (a) a continuous and
ib) a digital. For this example, let the filter time constant (t/) be 0.50 second and
the sample period (Ar) be 0.25 second.

The first-order filter is a first-order lag without dead time and with a steady-
state gain of 1.0.
(a) The transfer function for the continuous filter is Gfis) = l/irfs + 1). The

frequency response can be evaluated using methods presented in Chapters
4 and 10.

Cont inuous fi l ter : Gfis) = Gficoj ) = ," + 1 / r + ^ ?
ib) The transfer function for the digital filter is given in equation (L.10), with a =

e-At/xF Tne freqUenCy response can be evaluated by replacing z"1 with e~iAl)(0J
to give the following:

Digital f i l ter: Gfiz) = , 1~" Gfie<"™) = —-—J 1 - a z - 1 ' \ - c t e - u o o j
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FIGURE L.5

Frequency responses for continuous and digital (At = 0.25 second)
first-order filters. The filter time constant is 0.50 second.
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The amplitude ratios, \Y\/\X\, for both filters are plotted in the Bode diagram
in Figure L.5. One important use of the first-order filter is to attenuate higher-
frequency noise from a measurement. Note that the continuous filter is ef
fective at very high frequencies. The digital filter performs similarly to the
continuous filter at low frequencies. At higher frequencies, the digital filter is
not effective. Since many measurement signals contain very high frequency
noise from electrical interference, each measurement signal to digital control
equipment has a continuous (analog) filter with a small time constant before
the measurement is converted to a digital signal.

The frequency beyond which the digital filter deviates from the continu
ous filter can be estimated using Shannon's sampling theorem; "A continuous
function with all frequency components at or below co' can be represented
uniquely by values sampled at a frequency equal to or greater than 2a/." Ap
plying this approach, the highest frequency at which the digital signal closely
estimates the continuous signal is (using a)sampxe = n/At).

(*>' - Sample/2 = n/i2At) = 3.14/2(0.25) = 6.28 radians/second

This frequency is a reasonable estimate of the maximum frequency at which
the digital filter provides a reasonable estimate of the desired continuous
signal.

L.4 m DIGITAL CONTROL PERFORMANCE

The ultimate goal is always good control performance. Digital control systems can
perform as well as equivalent continuous control systems under certain situations,
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but they have potential difficulties that should be considered in algorithm design.
In this section, we apply the results of previous sections to evaluate digital control
performance. We will begin with the standard PID feedback controller and proceed
to IMC controllers.

PID CONTROL. The PID algorithm is easily implemented via either contin
uous (analog) or digital computation, with most new control equipment using
digital. In general, better digital control performance results from faster execution,
i.e., short execution periods. Guidance on PID performance is provided through
the consideration of the following four examples.
EXAMPLE L.11.
Tune the PI controller controlling the heat exchanger and evaluate the dynamic
response using simulation. For this example, we select the execution period as 2
minutes, although a commercial control system would typically execute the digital
controller several times per second.

The dynamics for the process are known from previous examples. We will use
the Ciancone PI disturbance correlation (Figure 9.9) modified as recommended in
Chapter 11 for digital control, i.e., 0' = 0 + At/2. The calculations are summarized
below.

Kp = -33.9 K/(m3/min)
r = 11.9 min
0 = Omin
0' = 0 + At/2 = 0 + 2/2 = 1.0 min

07(0' + r) = 1/(1 + 11.9) = 0.078
KpKc — 1 .J
77/(0' + t) = 0.23
Kc = 1.3/(-33.9) = -0.038 (m3/min)/K
Tj= 0.23(12.9) = 3.0min

The dynamic response for a step change in the set point is reported in Figure
L.6 for the controller applied to the nonlinear heat exchanger model (given in
Example 3.7). Note that the manipulated flow changes only every 2 minutes when
the controller calculation is executed; between executions, the flow is maintained
constant by the zero-order hold. The variables are well behaved, with the controlled
variable returning to its set point and the controlled and manipulated variables
experiencing smooth transitions, without undue oscillation or overshoot. Naturally,
the performance of the digital control system with the long execution period is not
as good as would be achieved by a continuous controller or a digital controller
with short execution period.

By the way, the linearized, closed-loop system stability can be evaluated us
ing equation (L.22). The roots of the characteristic equation are 0.76 ±0.27;'. Since
the magnitudes of the poles are 0.80 < 1.0, the poles are within the unit circle,
and the system is stable. The poles for this tuning are farther from the unit cir
cle than the poles for Example L.8. Thus, the Ciancone tuning in this example is
more robust to model errors because it has a greater margin from the stability
boundary.

The digital PI controller can be tuned using modified tuning correlations
to provide well-behaved dynamic responses; however, the control perfor
mance will degrade as the execution period is increased.
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FIGURE L.6

Dynamic response for a set point change to a digital PI control of the
stirred heat exchanger exit temperature determined in Example L.ll.

EXAMPLE L.12.
Determine the final value of the heat exchanger control system for a step change
in the set point of A SP

The solution can be found (for stable tuning) by applying the final value the
orem.

• ' . ASP
limCV(z) = limi(l-7^-1)-^—-z - » l z - > 1 , 1 - Z ~ '

\ - B Z-1

* ,* ,( , -B)r ' ( i + ^TJF)1 +
1-Bz '

l imCV(Q = ASP^^(1-g)(A//^)
KpKci\-B)iAt/Tt)

= ASP

Therefore, the digital control system with an integral mode returns the con
trolled variable to its set point, achieving zero steady-state offset.

Note that this important feature is achieved with a rectangular approximation
to the integral calculation; a perfect, continuous integral is not required!
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While the rectangular estimate is not exact, it provides a "persistent" adjust
ment of the controller output until the error returns to zero. Mathematically,
this appears as a term 1/(1 -z"1) in the controller, which is required for zero
offset at steady state.
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EXAMPLE L.13.
Determine the performance of proportional-only feedback control for the stirred-
tank heat exchanger. The controller execution period is increased to 15 minutes,
which would occur when a sensor can provide a new measurement very infre
quently. Use the value of the controller gain from Example L.11.

First, let us simulate the system and observe the performance. The dynamic
response of the stirred heat exchanger with P-only control is given in Figure L.7.
Both controlled and manipulated variables experience unacceptable oscillations.
This poor performance might be unexpected, since this is the same value for the
controller gain used in the PI controller, which gave acceptable performance in
Figure L.6; only the integral mode has been removed.

Let us investigate the cause by determining the poles of the closed-loop
system. The transfer functions for the process, equation (L.19), and the controller,
Gdz) = Kc, are substituted into the closed-loop transfer function, equation (L.21).
Recall that B = e-^t)lx with Ar = 15.

KpKcj\ - B)z~]
1 - Bz~l

- l
CVfc)
SPfc) ' KpKcj\ - B)z

\ - B z ~ l
The denominator of this equation, the characteristic equation, is set equal to zero
to evaluate the pole(s) of the system.

, - i0 = i\-Bz-l) + KpKd\-B)z- l (L.23)

Substituting the values for this example [B = 0.284, Kp = -33.9 K/(m3/min), and
Kc = -0.038 (m3/min)/K]. we find the value of the pole to be z = -0.64. This pole
is not close to instability, i.e., the boundary of the unit circle. However, this pole
is located in the region near where the unit circle crosses the negative real axis

2 0 4 0 60 80 100 120 140 160 180 200
Time

60 80 100 120 140 160 180 200
Time

FIGURE L.7
Dynamic response for digital P-only control of the stirred heat
exchanger exit temperature determined in Example L.13. The poor
performance is due to ringing.



(-1,0), which indicates that the sampled values will have a ringing behavior. This
is exactly the behavior that we see in Figure L.7.

Generally, a slowly sampled control system with proportional mode will tend
to ring.
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Tuning should be selected to reduce ringing while maintaining acceptable per
formance. One procedure is to lower the proportional gain and simultaneously
decrease the integral time. When the sampling is so infrequent that the process
essentially attains steady state between samples, the feedback controller should
be changed to integral-only with iKc)/Ti = [iAt)Kp]~l, which reduces the error
to zero in one execution (if Kp is known exactly).

EXAMPLE L.14.
Determine the maximum controller gain that achieves stable behavior for a first-
order process with proportional-only control and a 15 minute execution period.

We determine the answer to this question by using the characteristic equation
of the closed-loop system, which was derived in the previous example as equation
(L.23) and is repeated below.

, - i ' - i0 = il-Bz-l) + KpKd\-B)z

We solve for the pole fc) to give

z = KpKci\-B)-B
We want to find the limiting value when |z| = 1. For negative feedback, KPKC > 1,
and B = <r(A')/T > 0. Therefore,

Maximum Kc = Ku =
11 + 5 1 l+<rA'/r

K p i - B Kp 1 - e-^'x
Recall that no stability limit to the controller gain exists for continuous, P-only con
trol of a first-order system. The digital system is more restricted, but this result
is consistent with our interpretation of the sample time as a type of dead time.
Substituting the values for this example, the ultimate controller gain, Ku = -0.0529
(m3/min)/K.

U
do
mm
w % ~

A proportional-only feedback controller applied to a first-order process has
an ultimate gain.

IMC CONTROL. The other major single-loop controller algorithm presented
in this book is the IMC controller explained in Chapter 19. The IMC controller
structure is repeated in Figure L.8. The following design criteria were determined
for the IMC controller in Chapter 19 for an open-loop stable plant.
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SPfc) + Tpiz)
- n Gfiz) GCDiz)'cp

MViz)

EM)

HGJz)

HGJz)

FIGURE L.8

Block diagram of digital IMC feedback control system.
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1. The controller algorithm is an approximate inverse of the process model.

Gcpiz) * [HGmiz)r]
The approximation is required to ensure that the controller is physically realiz
able. The design approach involves factoring the process model into invertible
[HG~iz)] andnoninvertible [i/Gj(z)].

HGmiz) = HGliz)HG-miz)
By convention, the steady-state gain of the noninvertible factor is selected to
be 1.0. The controller is the inverse of the invertible factor.

Gcpiz) = [HG-miz)Tx
2. The controller gain is the inverse of the process gain; lim Gcpiz) =

l i m [ / / G - ( z ) ] - 1 * " * '
z-* l

3. The controller must be stable.
4. A filter is included in the feedback path to modulate adjustments in the ma

nipulated variable and to increase robustness to model error.

Here, the process transfer function includes dynamics of the final element (valve)
and the sensor. We will design IMC controllers in the next three examples.

Here, the process transfer function includes dynamics of the final element
(valve) and the sensor. We will design IMC controllers in the next three examples.
EXAMPLE L.15.
Design an IMC controller for the mixing process with dead time. Select the exe
cution period (Ar) to be 1 minute.

The transfer function for this first-order-with-dead time process was derived
in Example L.7 and is repeated in the following:

_ Kpj\ - g-A'/r)z-' _5 _ 0.181z-6pKZ} " 1 - e-*"rz-1 Z ~ 1 - 0.819Z"1HGPiz) =

Let us try to design the controller as the exact inverse of the process model above.

Controller from inverse of HGdz), transfer function:

GcPiz) =
MVfc) = [HGdz)}~1 = l-0.819z

.-6

-1

T p i z ) 0 . 1 8 1 * -
For the moment, we will assume that no filter is included, which is satisfied with
Gfis) = l. The digital controller would be implemented as a difference equation.



We apply equations (L.7) to convert the transfer function above to a difference
equation, with sample V representing the current time.
Controller from inverse of HGdz) difference equation:

MV„= 5.52iTp)n+6 -4.52(r„)„+5
The controller equation requires future values of Tp (the set point corrected by the
model error feedback); therefore, this control calculation is not possible. As in the
design of the continuous IMC controller, the approximate inverse must not invert
the dead time. Factoring out the dead time and the zero-order hold (combined to
give z-6) from the numerator of HGdz) and taking the inverse yields the following
control algorithm:
Controller from inverse of HG~Miz), transfer equation:

r n M V ( z ) r H r - , v r i 1 - 0 . 8 1 9 Z " 1Gcpiz) = -zr-rr = [HGdz)] =
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TPiz) 0.181
Controller from inverse of HG~Miz), difference equation:

MV„ = 5.52(7,),, - 4.52(y/;)„_,
This calculation requires only current and past values and can be implemented;
i.e., it is physically realizable.

Although the difference equation is realizable, the design can lead to a very
aggressive feedback controller. The dynamic response for a set point change
with a perfect model is given in Figure L.9. The variation in the manipulated vari
able is large and would not be acceptable for many chemical processes, e.g.,
manipulating distillation reboiler heating medium flow. Just as serious is the lack

co
U

10 20 30 40 5 0 6 0
Time

FIGURE L.9

Dynamic response for a set point change to a digital IMC controller
without filter controlling the mixing process with dead time (no model
mismatch). This controller is too aggressive for most applications. The

results are from Example L.15 plotted in deviation variables.
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of robustness; this controller would become unstable with modest modelling
errors.

We can add a filter to the control loop to moderate the manipulation and
increase robustness. Typically, one goal of the filter is to ensure that the power of
z_1 in the denominator is at least as high as the power in the numerator. For this
example, the natural choice is a first-order filter to give the following:

1-a l -0.819z_I
Gfiz)GCpiz) = -^ = Gfiz)[HG-iz)]-> = 0.181T p i z ) ~ J W , W J 1 - a z " 1

We can use the tuning correlation for continuous IMC controllers provided in Figure
19.6 as a first estimate. The calculations are summarized in the following:

0 = 5min r = 5min 0/(0 + t) = 5/10 = 0.50
TP/i& + t) = 0.35 (from Figure 19.6)
T/ = (0.35) 10 = 3.5 min
a = e-<A'/r/) = £-(1/3.5) = 0 75

The controller in deviation variables using these variables is

Controller from inverse of HG'iz) and filter, difference equation

MV„ = 0.75MV„_, + 1.38(7-/,),, - 1.13(TP)„_1
The closed-loop performance of the digital controller and filter is shown in Fig
ure L.10a for a perfect model. While the approach of the controlled variable to
its set point is slowed somewhat, the adjustment in the manipulated variable is
more moderate and would be acceptable in most processes. The added robust
ness is demonstrated by the performance with model error (all plant parameters
+25% from their estimated values) shown in Figure L.10b. Some degradation in
performance is evident, but while not ideal, this performance would normally be
acceptable.

This example demonstrates that the IMC design procedures presented in
Chapter 19 can lead to acceptable controller performance. Recall that the
noninvertlble factor includes the dead time and the zero-order hold.

-tk—i
Fs

, GAQ
i i

i ' j

FA

'Al

3 1 »
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EXAMPLE L.16.
Design an IMC controller for the series of chemical reactors in Example 1.2. The
concentration of the reactant leaving the second reactor iCA2) is controlled by ad
justing the solvent flow rate (F5). Recall that this dynamic response experiences
an inverse response due to two parallel paths: (1) the faster residence time ef
fect and (2) the slower and stronger inlet concentration effect. The continuous,
linearized model between the manipulated and controlled variables is derived in
Example 1.2. The transfer function model is second-order with numerator zero and
is repeated in the following equation:

G is) = Ca2(s) = *p(t"*"J+1) = ^^(,y + 1/riead)p K S ) F d s ) i z s + l ) 2 ( 5 + 1 / r ) 2

The first step is to determine the z-transform of the process with a zero-order hold.
The term ZiGpis)/s) can be evaluated using entry 11 in Table L.1 (with a0 = l/nead
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FIGURE L.10

Dynamic response for a set point change to a digital IMC controller
with filter controlling the mixing process with dead time. The results

are from Example L.15 plotted in deviation variables: ia) no
model mismatch; ib) plant parameters 25% larger than the

controller model.
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and a = 1/r). The values for the parameters are

Kp = -1.66 (mole/m3)/(m3/min) a = 1/r = 0.121 min-1
a0 = 1/̂ iead = 0.125 min-1t = 8.25 min

Tiead = -8.0 min At = 1.0 min
When these values are substituted into the z-transform and terms with like powers
of z_1 are combined, the following discrete process model with zero-order hold is
determined:

HGdz) =
bxz~x +b2z- 2CA2jZ) =

Fsiz) \ + axz~x + a2z~2

where a\ = -1.7717
a2 = 0.7847

bx =0.1616
Z?2 = —0.1832

Poles are 0.8858 (repeated) Zero is 1.1339
In the previous example, we found that the controller could be derived by inverting
the process model without the dead time and zero-order hold; this process has
no dead time and has a zero-order hold fc"1). By taking the inverse of the model
with the zero-order hold factored out, the following controller equation results:

C A 2 i z ) b x + h z - 1HG±iz)=z- i HGZAz) =

Controller from inverse HG'iz)

Gcpiz) =

Fsiz)
transfer function:

1 +aiz~] +a2z~2

Fsiz) l+axz-l+a2z~2
TPiz) bx + b2z- i

Recall that the input to the controller is the target, Tp> which is the set point minus
the model error, Em = (C^W - (C^W

Before considering closed-loop performance, we evaluate the stability of the
controller algorithm, Gcpiz). We know that the stability of the transfer function de
pends on the poles of the transfer function. From the expression for the controller
above, we see that the numerator zero in the process model becomes a pole in
the controller. For this example,

The controller pole = -b2/b\ = 1.1339, which has a magnitude greater than
1.0.

The controller is unstable, which is clearly not acceptable! Recall that the plant
was stable, as indicated by poles of the process being located inside the unit
circle. A zero outside the unit circle does not affect the plant stability, although it
certainly affects the dynamic behavior, in this case giving an inverse response. To
reiterate,

The inverse of a stable plant can lead to an unstable controller, because
the zeros of the plant are the poles of the controller.

To yield a stable controller, we must include in the HG+iz) all zeros that are outside
the unit circle. If we were to simply factor out these zeros, we would change the



gain of the remain ing process model , HG' iz) . Therefore, i f we factor any zeros, 999
we must compensate the gain of the remainder of the model. The procedure is mmmmmmmmmm
d e m o n s t r a t e d a s w e c o n t i n u e w i t h t h e e x e r c i s e . D i e i t a i C o n t r o l
C o n t r o l l e r f r o m i n v e r s e H G ~ i z ) w i t h t h e u n s t a b l e p o l e r e m o v e d , P e r f o r m a n c e
transfer function:

r c \ - Fs^ - 1 +fliz~' +fl2Z~2cp{z) ~fdT)- bx~+T2
Note that when the unstable controller pole is removed, the contribution of the pole
to the final value is retained, so that the controller gain is unchanged, as shown in
the following expression:

Wmibx + b2z~l) = bx +b2z-*\

Now, we have achieved a controller that is stable. Also the controller is causal
because the current manipulated variable (Fs) depends on only current and past
values. However, the controller would likely be too aggressive, so we want to add
a filter that ensures that the orders of the numerator and denominator are equal.
This will require a second-order filter, which we choose to be two first-order filters.
The resulting controller is given in the following:
Controller from inverse HG~iz) with the unstable pole removed
and a filter added, transfer function:

T p i z ) b x + b 2 V 1 - c t z ~ x /
We have designed a stable, causal controller that can provide robustness and
moderate variation in the manipulated variable, with the proper choice of the filter
time constant. No general studies are available to select the filter for this process
model structure, so some trial-and-error tuning leads to the selection of 5 min
utes for the filter time constant, to give a = e-(*')/Tf = 0.819, With this value, the
controller algorithm becomes the following, which is clearly causal:
Controller from inverse HG~iz) with the unstable pole removed
and filter added, difference equation:

(F,)„ = 1.64(F,)„_, - 0.67(F,)„_2 + 8.38(7/,),, - 14.85(T/,)„_1 + 6.58(T/,)„_2
where iTp)„ = (SP)„ - [iCA2meas)„ - iCA2pKd)n]
Recall that all variables in the difference equations are deviations from initial con
ditions. To calculate the actual flow, the initial condition of the solvent flow must be
added to the value calculated above.

A sample set point response of the digital control system applied to the non
linear series reactor process is given in Figure L.11. While the dynamic response is
well behaved, no feedback controller can remove the poor performance resulting
from the unfavorable process dynamics—specifically the inverse response. The
performance achieved with the IMC controller is equivalent to the performance
achieved with a proportional-integral controller, shown in Figure 13.15.

EXAMPLE L.17.
Reconsider the series reactors just analyzed in the previous example. Here, eval
uate the effect of different sampling periods on the IMC controller design.

Naturally, the continuous process does not change when the sampling period
changes; therefore, the continuous transfer function and the parameters Kp, r, and
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FIGURE L.11

Dynamic response for a set point change to a digital IMC controller with
the unstable pole removed and with a filter. The process is a series of
chemical reactors with an inverse response. The results are from Example
L.16.

ijcad do not change. Only the sample period (AO changes. However, because the
sample period appears in most terms in entry 11 of Table L.1, all coefficients in
the z-transform change. The general form of the z-transform is repeated in the
following equation:

HGdz) = CA2jz) = bxz-l+b2z~2
Fsiz) 1 +axz~l +a2z~2

We recall that the zero in the process model, -b2/bx becomes the pole for the
IMC controller. If this pole has a magnitude greater than 1.0, the controller will
be unstable, which is not acceptable. The results below summarize the coeffi
cients in the z-transform and the poles and zero for several values of the sample
period.

At « i a2 h b2
Poles
(repeated) Zero

0.10 -1.9759 0.9760 0.0192 -0.1940 0.9880 1.013
1.0 -1.7717 0.7847 0.1616 -0.1832 0.8858 1.134
3.0 -1.390 0.4830 0.3205 -0.475 0.6950 1.480

10.0 -0.595 0.0885 0.0133 -0.8324 0.2976 63.63
15.0 -0.3246 0.0263 -0.4256 -0.7390 0.1623 -1.740
20.0 -0.1771 0.0078 -0.8110 -0.5680 0.0885 -,

) less than 1 ^
(g).70(jjj)

Magnitude



First, we see that the poles of the process always remain in the unit circle.
The conclusion that the stability of an open-loop process does not depend on the
sampling period certainly conforms to our expectation.

Second, we note that the magnitude of the zero becomes less than 1.0 for
large sampling periods. We can understand this result by recognizing that the
sampled values do not experience an inverse response if the period is sufficiently
long; naturally, the inverse response occurs during intersample behavior. These
results show that an IMC controller algorithm including the inverse of the zero
would be stable for a period of 20 minutes.

However, we must evaluate the potential design further for a third important
point. We note that the zero of the process becomes a pole of the controller, and a
pole with a large negative real part will cause undesirable ringing. Therefore, this
design with a pole at (-0.7,0) will not be acceptable. One method suggested by
Morari and Zafiriou (1989) for achieving reasonable performance is to "remove"
the ringing pole using the same method as used for removing the unstable pole,
remembering to include the constant to maintain the controller gain unchanged.
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Conclusions

Digital IMC controller design must remove ringing poles to achieve accept
able performance.

We have applied IMC design to digital control in this section and have found
that the design method, summarized in the four steps in the beginning of this
section, is generally the same as for continuous systems. We have found one
major difference; the design method must include a check for ringing pole in the
controller. In addition, using z-transforms will enable us to apply the IMC design to
more complex process models, not simply first-order-with-dead-time as in Chapter
19 on continuous processes. Finally, we have a direct manner of determining the
difference equations for the controller and model calculations to be implemented
in a digital computer.

L.5 □ CONCLUSIONS
In this appendix, we have developed a rigorous method for analyzing linear dy
namic systems involving continuous processes and digital controllers. The z-
transform of each component was derived and the individual transfer functions
were combined using block diagram algebra to form an overall model. This model
was applied to determine the stability, final value, and frequency response of digital
systems.

Many of the results in this appendix were previously established through less
rigorous studies in several chapters of the book. As we expect, delaying feed
back control by increasing the execution period (1) requires tuning adjustments
to maintain proper stability margins, and (2) degrades the control performance. In
addition, we have learned about the new behavior of ringing, how ringing occurs
in PID and IMC controllers, and how ringing can be avoided. Finally, we have
learned how to derive difference equations for implementing digital calculations,
and this method is easily implemented beyond the simple lead/lag described in
Appendix F.
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APPENDIX L
Analysis of Digital
Control Systems
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For more advanced coverage of IMC design, see Morari and Zafiriou (1989) above.


