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Parallel process systems were introduced in Section 5.4, where a wide range of
potential process behaviors were demonstrated. An important factor in determining
the behavior for a specific system was shown to be the numerator, that is not a
constant but contains the Laplace variable "s." Setting the numerator term (alone)
to zero and solving for s provides a method for evaluating the numerator "zero."
The possible step response behaviors are summarized below (for a stable system
with real roots of the characteristic polynomial).

1. When the zero is negative and larger in magnitude than at least one pole, the
dynamic step response of the output is an overdamped, S-shaped response.

2. When the zero is positive, the output experiences an inverse response.
3. When the zero is negative and smaller in magnitude than all poles, the output

experiences an overshoot of its final value.

Importantly, overshoot requires unique controller design and tuning, and inverse
response can be difficult to control for any feedback controller. Therefore, the
engineer should understand how the process design and operation causes these
unique dynamic behaviors. Two process examples are presented in detail in this
appendix to provide a link between process technology and parallel systems.

EXAMPLE 1.1. Heat exchanger with bypass.
Often a process stream must be heated or cooled a variable amount using a
heat exchanger. A common method for variable heating is a heat exchanger with
bypass, as shown in Figure 1.1 for a cooler; the bypass provides the parallel struc-
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FIGURE 1.1
Heat exchanger with bypass and sensor.

ture in this example. The flows through the exchanger and through the bypass are
adjusted while the total process flow is maintained constant.

The behavior of an industrial shell-and-tube heat exchanger would be difficult
to model, because it is a distributed-parameter system with complex flow patterns;
therefore, the system is approximated as a stirred-tank heat exchanger, which
retains the key properties of the system dynamics, in particular the response of
the measured temperature signal to a step change in the flow to the exchanger.

Assumptions.
1. The same assumptions apply as in Example 3.7.
2. There is no transportation delay in short pipes.
3. The total flow (exchanger and bypass) is constant: FT = Fexch+Fby = constant.

Data. Note that these parameters are not realistic for a shell-and-tube heat ex
changer, although the dynamic response is reasonable because the increased
fluid inventory takes the place of the substantial metal capacitance.

1. 7o = 100°C; p = IO6 g/m3; Cp = 1 cal/(g°C); UA = 50 x IO6 cal/(min°C);
Tdn - 60°C; z3 = 0.5 min; V = 200 m3.

2. Initial steady state: Fby = 50 m3/min; Fexch = 50 m3/min; Tx = 80°C; T2 = r3 =
90°C.

3. Input change: AFexch = -10 m3/min at t = 10 min; consequently, AFby =
+10 m3/min.

Formulations. The fundamental model of the heat exchanger is the same as
presented in Example 3.7, except that the feed flow rate, not the cooling medium
flow, is changed in this example. Thus, model equations for the heat exchanger,
bypass, and mixing are

d T \ F e x c h , - r r x U A

T _ ^exchT| + FfayTp _ Fexch T| + (Fy — Fexch)7o
F e x c h + F b y F t

(1.1)

0.2)

The temperature-measuring device is normally protected from contact with the
process fluid by a metal sleeve called a thermowell, which introduces additional



dynamic lag due to heat transfer dynamics associated with the thermowell. In this
example, the thermowell dynamics are assumed to be well modelled by a first-
order system with a time constant, xs, of 0.50 minutes (which is slower than most
commercial sensor systems).

dT3xs— = T2-T3at (1.3)

with r3 the signal from the sensor. These equations can be linearized, expressed in
deviation variables, and transformed to the Laplace domain to give the individual
transfer functions.

G« = Tds) **exch

Fexch is) TexchJ + '
(1.4)
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The block diagram for this model is shown in Figure 1.2, in which the parallel
path is clearly evident, since the variable Ftxcds) influences Tds) through two
paths. Note that for a parallel path to exist, a split must occur in the block diagram.
The overall transfer function, relating the flow to the exchanger to the measured
temperature, can be derived from block diagram algebra.

Tds) = Gsis)[GFMis) + GTMis)Geds)}Fexcds) (1.8)
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FIGURE 1.2

Block diagram of exchanger with bypass and sensor.
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From equation (1.9) we conclude that the poles of the overall system are the poles
of the individual systems. In this example the system is second-order with real,
distinct poles at -l/TexCh and -1/r,; thus, it is stable and is not periodic.

Due to the parallel structure, the transfer function has a zero in the numerator,
which for this example is at s = -iKFM + KexchKTM)/KFMxexch and is real and
negative for this example. This zero can significantly affect the dynamic behavior
of the system; therefore, the response of the system to a step input cannot be
determined using Figure 5.5, which assumed a constant numerator. The dynamic
response can be determined by inverting the Laplace transform of Tds) for a step
in Fexchis)-

Solution. By substituting the data in the problem statement into equation (1.9),
including the step input, Fexcds) = -10/5, and determining the inverse using entry
10 in Table 4.1, the following analytical solution for the linear approximation can
be found:

TdO = 1.0 - 2.333e"/0-5 + 1.333ew/2 (1-10)

Results analysis. Dynamic responses are given in Figure 1.3 for the nonlinear
and approximate linearized models. They both show that the system output, T3,
overshoots and then approaches its final value smoothly. (The occurrence of the
overshoot depends on the relative magnitudes of the numerator and denominator
time constants.) The time at which the maximum occurs can be determined by
setting the derivative of equation (1.10) to zero and solving for time, giving t = 1.3
minutes after the step. Thus, the parallel structure has fundamentally altered the
dynamic behavior of this second-order system.
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FIGURE 1.3
Nonlinear and linearized dynamic responses for Example 1.1.



The reason for this behavior can be understood by considering the two parallel
paths in the physical system. When the exchanger flow is decreased, temperature
Tx is initially unaffected, and the modified flow ratio to the mixing point results in
an immediate increase in temperature T2. However, the exchanger outlet temper
ature Tx decreases with a first-order response because of the lower flow to the
exchanger. As a result, the mixture temperature decreases from its initial peak to
its final value with a first-order response. The measured temperature follows the
mixture temperature after the sensor first-order lag. Note that the overshoot is not
due to a complex pole and that the behavior is not periodic. Rather,
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The unique behavior is due to parallel process paths with significant differ
ences in dynamics for the two paths.

Naturally, such behavior should be considered in designing and operating
the process. Imagine driving an automobile that tends to overshoot the change in
direction indicated by the steering wheel; a careful and skilled driver (or control
algorithm) would be required.

EXAMPLE 1.2. Series reactors.
This example demonstrates that the parallel paths do not have to be external
bypass streams but can be separate mechanisms within a single process. The
process considered is a series of two CSTRs, shown in Figure 1.4, with the same
vessel size, flow rate, and chemical reaction as in Example 3.3; thus, the reactor
models are identical to those derived in Example 3.3, equations (3.24) and (3.25)
(page 64). In this example the response of the reactant concentration at the outlet
of the second reactor to a step change in the solvent flow is to be determined.

Formulation. In this example the flows of the reactant and solvent can be
changed independently. Also, the solvent flow is so much larger than the com
ponent A flow (FA) that we assume that the total flow is the solvent flow; that
is, F « Fs and CAo % iCAFA)/Fs. (Note that Fs = 0.085 and CA0 = 0.925, so that
CAFA = 0.0786 mole/min.) With these assumptions, the following transfer functions

FIGURE 1.4
Series chemical reactors for Example 1.2.
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can be derived:
CaoOO CAFA
Fsis)

Cujs)
Fsis)

= Gmds) = -jf$ = KmXx = -10.9
iFs)2

= GFiis) =
[CA<-l(5)-CA,(5)],v

Fs + Vk

mole/m3
m3/min

KFi

(1.11)

\Fs + Vk)
5 + 1 T5 + 1

2 . 4 1 1 . 6 1
Gnis)= nne , , GF2is) =8.255 + 1 8.255 + 1 (1.12)

Caj(5)
CAi-Xis)

= GA|(5) = Fs + Vk KAi 0.669

\FS + Vk)
5 + 1 T5 + 1 8.255 + 1 fori = 1,2

(M3)
The linearized model is represented in the block diagram in Figure 1.5, which

shows the parallel paths. In this example, the parallel paths result from the different
effects of the solvent flow, through changes in the feed concentration and flow rate
(residence time), on the outlet concentration of the second reactor. The overall
transfer function can be derived using the block diagram to give the overall input-
output relationship.

CA2is)
Fsis)

= GF2is) + G^isWnis) + GA2is)GAXis)Gmds) (1.14)

This expression clearly shows that three separate effects of the input influence the
output concentration. The first effect, GFiis), is of the flow or residence time in
the second reactor; this effect begins instantaneously and increases the concen
tration. The second effect, GA2is)GFXis), is the residence time in the first reactor,
which increases the feed concentration to the inlet to the second reactor. The third
effect involves the decrease in the feed concentration, CAo; this effect is slower but
of greater magnitude, ultimately decreasing the second reactor outlet concentra
tion. The overall effect can be determined by substituting the individual transfer
functions into equation (1.14) and rearranging to give

Ca2(s) KF2ixs + 1) + KA2KFX + KA2KAX ̂ mix

(1.15)
Fsis) ixs + l)2

-1.66(-8.05 + l)
(8.255 + 1)2

Fsis)
Gmix(*) ■

CA0(*)
GA[ J

„ «-AlW GA2is) ^ <-A2W ^
1J

I

GFXis)

Gnis)

FIGURE 1.5

Block diagram of reactors in Example 1.2.



Again, the system is second-order and has the same poles as the individual
elements in the system, but because of the numerator dynamics the response
cannot be determined from a simple series system (i.e., Figure 5.5). Also, the
result in this example is different from the previous example, because the transfer
function in equation (1.15) has a positive numerator zero (5 = 1/8.0). This is due
to the last term in the numerator being large and negative, since KmXx is less than
zero. This result indicates a mechanism for inverse response of the output variable,
in which the initial response of the output can have the sign opposite to its final,
steady-state change.
Solution. Again, the response can be determined by solving for the inverse
Laplace transform using Table 4.1, entry 8. Substituting the data in the problem
statement, including the input step of Fsis) = AFv/5 = 0.0085/5, gives

Cpa.it) = -0.0141 + (0.0141 + 0.00337Oe-,/8-25 (1.16)

Results analysis. The response to a step change in the solvent feed flow, with
reactant flow unchanged, is shown in Figure I.6 for the nonlinear and approximate
linearized models. Note that the outlet reactant concentration initially increases,
because of the decrease in residence time, which affects both reactors, including
the last, immediately. However, the decreased feed concentration decreases the
reactant concentration, initially in the first reactor and ultimately in the final reactor.
Thus,
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The outlet concentration in the second reactor experiences an initial inverse
response, because the fast effect of the residence time influences the output
before the larger, slower feed concentration effect.
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FIGURE 1.6

Response for series chemical reactor to step in solvent flow in Example 1.2.
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Behavior similar to this example is observed in other physical systems, espe
cially tubular reactors. The series of CSTRs is selected in this example because
the mathematical analysis is simpler, but lumped systems in series can serve
as an approximation for the distributed system (Himmelblau and Bischoff, 1968).
Modelling and experimental results for inverse responses in tubular reactors are
presented by Silverstein and Shinnar (1982) and Ramaswamy et al. (1971).

The dynamic characteristics demonstrated in this example would be expected
to have great influence on feedback control. Imagine driving an automobile that
responded initially in the inverse direction to a change in steering! The most ap
propriate response would be to eliminate the inverse response by redesigning the
process, if possible.
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QUESTIONS
1.1. Determine the response of the measured temperature T3 to a step change

in the coolant flow rate in the process in Figure 1.1 and Example 1.1. Based
on the dynamics, would you prefer to manipulate the coolant flow rate or
the bypass flow to control 7*3?

1.2. Determine the response of the measured temperature T3 to a step in the inlet
temperature Tq. Discuss the similarities and differences of this behavior to
the dynamic response in equation (1.9) and Figure 1.3.

1.3. A model and dynamic response are derived in Example 1.2 for a series
of two chemical reactors. In the worked example, the solvent flow (Fs) is
changed in a step and the outlet concentration experiences an inverse re
sponse. Determine the dynamic response for a step change of AFA, with all
other inputs constant. All assumptions are the same as in Example 1.2, and
you may use relevant results without deriving. The answer to this question
should include an analytical expression for the response of CA2 and a de
scription of the dynamic response of the concentration in the second reactor.
Compare your results with Figure 1.5, and discuss whether controlling CA2
would be easier or more difficult by manipulating FA.

1.4. The series of two chemical reactors described in Example 1.2 is the initial
process upon which this question is based. You may use all results from
the modelling in Example 1.2 without proving, simply cite the source of
the equations.



ia) The solvent flow and composi t ion at the in let to the first reactor are to 947
be controlled by two single-loop controllers. By adding sensors and \mmmmMmm$WMm
final elements as required, describe briefly and sketch a control system Questions
for this purpose.

ib) Given this strategy is functioning perfectly (maintaining Cao con
stant), determine the model between the solvent flow and the con
centration of the reactant in the second reactor, Ca2, and comment
on the expected composition (CA2) control performance using this
manipulated-controlled variable pairing.

ic) Compare with the control performance in Example 13.8.

1.5. The dynamic response of a CSTR is considered in this question. You are to
determine the characteristics of the response in component B in the effluent
to a change in feed flow rate. You should determine the order, stability,
damping, and effect of numerator zero from parallel paths. Based on your
analysis, discuss whether a feedback controller from effluent concentration
of B (Cb) to feed flow (F) would perform well.

Assumptions:
1) The reactor is well mixed and has a constant liquid volume.
2) The reactor is isothermal.
3) The density of the reactant and products are identical.
4) Only reactant (A) and solvent are present in the feed and the feed com

position is constant.
Data:
1) The reaction is described by the following elementary reactions.

where — rA = kxCA and —re = k2C^


