
Partial
Fractions

and Frequency
Response

Dynamic models involve differential equations that are best analyzed using Laplace
transform methods. In Chapter 4, the partial fraction method was introduced as a
way to invert Laplace transforms, and, more importantly, to establish a basis for
determining key system properties like stability and frequency response directly
from the transfer function. The methods were explained in Chapters 4 and 10 and
applied throughout subsequent chapters. The proofs of the methods are provided
in this appendix.

H.1 n PARTIAL FRACTIONS
The Laplace transform method for solving differential equations could be limited
by the availability of entries in Table 4.1, and with so few entries, it would seem
that most models could not be solved. However, many complex Laplace transforms
can be expressed as a linear combination of a few simple transforms through the
use of partial fraction expansion. Once the Laplace transform can be expressed
as a sum of simpler elements, each can be inverted individually using the entries
in Table 4.1, thus greatly increasing the number of differential equations, that can
be solved. More importantly, the application of partial fractions provides gener
alizations about the forms of solutions to a wide range of differential equation
models, and these generalizations enable us to establish important characteristics
about a system's time-domain behavior without determining the complete transient
solution.

The partial fraction expansion can be applied to a Laplace transform that can
be expressed as a ratio of polynomials in s. This does not pose a severe limitation,
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since many models have the form given below for a specified input, Xis).

Dis)Yis) = Fis)Xis) = Nis)
Nis)

where

Yis) = Dis)
(H.l)

Yis) = Laplace transform of the output variable
Xis) = Laplace transform of the input variable
Fis) = Laplace transform of the function Fit)',

Fis)Xis) is the forcing function
Nis) = numerator polynomial in s of order m
Dis) = denominator polynomial in s of order n,

termed the characteristic polynomial
The partial fractions method requires that the order of the denominator be greater
than the order of the numerator, i.e., n > m\ models encountered in process control
will satisfy this requirement.

The Laplace transform in equation (H.l) can be expanded into an equivalent
expression with simpler individual terms by the application of partial fractions.

Partial Fractions

Yis) = Nis)
Dis) + C2

m=c>c-imhc>c-im]
Hxis) H2is)

+ C2C~l

+

+
(H.2)

(H.3)
The Ci are constants and the Hds) are low-order terms in s which represent the
factors of the characteristic polynomial, Dis) —0.

Initially, the C/'s are unknowns in equation (H.2) and must be determined so that
the equation is satisfied. There are several ways to determine the constants, and
the partial fraction expansions and the resulting Heaviside expansion formula are
presented here for three types of factors of the characteristic polynomial; distinct,
repeated, and complex.

DISTINCT FACTORS. If the characteristic polynomial has a distinct root at
a, the ratio of polynomials can be factored into

Yis) = NjS) _ Mis)
D is )~ a s —a + Ris) (H.4)

with Ris) being the remainder. After multiplying equation (H.4) by is - a) and
setting s = a [resulting in the term is - a)His) being zero], the constant can be
determined to be M(a) = C. This approach is performed individually for each
distinct root, and the function of time, Yit), is the sum of the inverse Laplace
transforms of all individual factors. The expression for distinct factors can be
summarized in the following Heaviside expansion which is a generalization of the
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REPEATED FACTORS. A similar partial factor expansion can be applied for
"n + 1" repeated factors, i.e., identical, real roots of the characteristic polynomial
[Dis)], as shown below.

Y ( s ) = N ( s ) = M ( S ) C ] I C l I , C " + ' 1 R ( s
D i s ) i s - « ) " + ' s - a i s - a ) 2 i s - a ) n + l W

(H.6)
The coefficients can be determined sequentially by

1. Multiplying equation (H.6) by is - a)n+l and setting s = a (determining
C1+1)

2. Multiplying equation (H.6) by is - a)"+1, taking the first derivative with
respect to s, and setting s = a (determining Cn)

3. Continuing this procedure (with higher derivatives) until all coefficients have
been evaluated

The time-domain function for a repeated factor can be expressed as (Churchill,
1972)

c->\m] =_Lfil[AW]\_Dis) J repealed «! [ ds"
(H.7)

where Mis) is defined in equation (H.6).

COMPLEX FACTORS. The final possibility for the factor involves complex
factors, and the analysis for a distinct, complex factor is given for the system shown
below.

N i s ) M i s )
Yis) = -±+ = - ±r—7 + *(*) with of and o> real (H.8)Dis) is — a)2 + co2

The complex roots can be expressed as two distinct roots a a ± coj, so that by
applying equation (H.2) the Laplace transform and its inverse can be expressed as

AW = * , ( , ) + M M
Dis) s—a + coj s—01—coj

Yit)**** = mis)]^^-""' + [M2(5)L=a+w^(a+^')' (H.10)factor

The coefficients in equation (H.10) are complex conjugates and can be expressed
as Mi (+a - coj) = (A + Bj) and M2i+a + coj) = (A - Bj), respectively. These
expressions can be substituted into equation (H.10) to give

F(0 com,** = (A + Bj)eia-a,j)t + iA- Bj)e{a+a)j)lf a c t o r ( H . l l )

= eO'iAieJ0" + e-im) + jBie-^1 - e^')]
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'AO ~w
do

' t i n ' c o m
F.

Equation (H. 11) can be modified to eliminate the complex terms by using the Euler
relationships.

cos(<wO =

sin(atf) =

2

V

2cosicot) = eJa,t +e-Ja)t

2smicot) = jie-jtot-ejo)t)

(H.12)

(H.13)

The resulting expression can be used to evaluate the inverse term for a complex
conjugate pair of roots of the characteristic polynomial

Yit) complex = 2eat[A cosicot) + B sin(o>f)]
factor

(H.14)

The proof of an alternative formulation, along with expressions for repeated com
plex factors, is available in Churchill (1972).

The application of partial fractions is demonstrated in the following example
that includes real and complex roots of the denominator.

EXAMPLE H.1.
For the CSTR modelled in Appendix C, Section C.2, evaluate the inverse Laplace
transform of the reactor temperature for a step change in the coolant flow rate.

The original model involved two nonlinear differential equations for the com
ponent material and energy balances which were linearized and expressed in
deviation variables; these equations are repeated below.

= anCA+ax2T' + al3C'M + aX4F^+al5Ti + al6F'
dt

dT'— = a2XC'A + a22T' + a2ZC'M + auF'c + a^ + a26F'
at

(C.11)

(C.12)

In this example, the only input variable which changes is the coolant flow which
experiences a step, so that C'Mis) = T0'(s) = F'is) = 0. The Laplace transforms of
equations (C.11) and (C.12) can be taken to give

sC'Ais) = anC'Ais) + al2T\s) + auF'ds)
sT'is) = a2xCAis)+a22T'is)+a2AF'ds)

(H.15)
(H.16)

Equations (H.15) and (H.16) can be combined algebraically. First, equation (H.15)
is rearranged to solve for CAis) = ai2T'is)/is -au), since aH = 0; this term is then
substituted into equation (H.16) to give

T'is) = a^s + ia2\au -a^au)
s2 - (flu + 022)$ + iaua22 - a\2a2i) F'is) (H.17)

When the numerical values are substituted into equation (H.17) using the CSTR
data in Section C.2, the result is

F'is) = -\/s an = —7.55
a2l = 852.02

al2 = -0.0931
a22 = 5.77

a,4 = 0.0
«24 = -6.07

T'is) = (-1)1-6.07(5)-45.83]
sis2 + \.19s + 35.S0) (H.18)

Partial fraction expansion requires the roots of the characteristic polynomial, which
are -0.894 ± 5.92j and 0.0; thus, two factors are complex. The inverse transform



for the complex factors can be determined by using equations (H.11) and (H.14)
with A = -0.64, B = 0.42, a = -0.894, and co = 5.94.

Mxis)\s=la-ioj —
i-\)i-6.01s- 45.83) = -0.64 + 0.42 j
,is + 0.m-5.92j)is)js=_om_$92j

r(r)romp!ex = 2e~°-mt [-0.64 cos(5.92/) -{-0.42 sin(5.92r)]
factor

The single distinct factor can be inverted using equation (H.5).

(-lX-6.07.s- 45.83)Mis)\s=0 -r J.v=0
1.28s2 + 1.7895 + 35.80

nOdistinct = 1.28e°' = 1.28

The complete inverse transform is the sum of the two functions.

T\t) = 1.28 + 2eT0-894'[-0.64cos(5.92/) + 0.42 sin(5.9201

(H.19)

(H.20)

(H.21)

(H.22)

(H.23)
The solution to the linear approximation in equation (H.23) is a damped oscillation.
This underdamped behavior did not occur in the simple processes modelled in
Chapters 3 and 4. A comparison of the solutions to the linearized and nonlinear
equations in Figure H.1 shows how the linearized model represents the essential
characteristics of the true process response. Naturally, the accuracy of the lin
ear approximation depends on the size of the input change, with the accuracy
improving as the input magnitude decreases.
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FIGURE H.1

Linearized and nonlinear responses for a step of —1 m3/min in coolant flow
at t = 1 min for the CSTR in Example H.l.
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H.2 m FREQUENCY RESPONSE

Frequency response is defined as the output variable behavior resulting from a sine
input variation after short-term transients become negligible. Frequency response
is important in determining the stability and control performance of linear dynamic
systems, and it is used extensively in process control. The simplified method for
evaluating the frequency response used in process control involves determining the
amplitude ratio and phase angle from the transfer function with s = coj\ the proof
for this method is presented in this section. We begin with a general expression
for the frequency response; the following equation gives output Yis) of a linear
system with a transfer function Gis) and a sine input forcing X is) with magnitude
A and frequency co.

Yis) = Gis)Xis) = Gis) A
CO

s2 + co2 (H.24)

The transfer function is assumed to be a ratio of polynomials, so that the solution
can be analyzed using a partial fractions expansion of the right-hand side of equa
tion (H.24), as explained in the previous section. The general form of the solution
to equation (H.24) can be determined by accounting for all poles (roots of the
denominator) whether real distinct, real repeated, or complex.

,«!' ap'Yit) = Axeal +--- + iBx + B2t + Bltl + • ■ -)e

+ [Ci cosicot) + C2 sin(atf )]«"*' + • • • + D\e~iM + D2eja"
(H.25)

The final two terms in equation (H.25) account the additional poles from the sine
input. All but the last two terms tend toward zero as time increases, as long as the
system is stable, i.e., Re(a,) < 0 for all i. Thus, only the last two terms in equation
(H.25) affect the output behavior after a long time, i.e., which is the definition of
the frequency response. The constants for the last two terms can be evaluated using
the partial fractions method for distinct roots, ax = —jco and ot2 = +jco.

[ A c o 1 A G i - jD x = G i s ) - — = G ( s ) | , = - y „ — = - A - ^ 4
L i s - J O > ) } s = - j u > " 2 / 2 /

-jco)
= - J 0 >

A G i j c o )= Gis)\s=+ja)—r^ = A
s = + j a > + 2 J + 2 J

(H.26)

(H.27)

Since only these terms affect the long-time behavior, the output can be expressed
as (with the subscript FR for the frequency response)

Ymit) = ~Gi-ja>)e-*» + ^Gijco)e^ (H.28)

Any transfer function, which involves complex numbers, can be expressed in polar
form using

Gijco) = \Gijco)\e* with cf> = LGijco) = tan"1 {l™^^ 1 (H.29)[ Re[Gijco)] J
Equation (H.28) can be expressed in polar form using equation (H.29) to give

YvRit) = ~\Gicoj)\e-^^ + ^\Gicoj)\e{o>t+W (H.30)
2 y 2 j



This result, along with Euler's identity to convert the exponential expressions to
a sine, gives the final expression for the frequency response of a general linear
system.

Ypnit) = A | Gijco) | sinicot + 0) = B sinicot + 0) (H.31)

Thus, the output variable Yit) is also a sine with (1) the same frequency co as the
input, (2) an amplitude B, and (3) a phase shift of 0 from the input. The simplified
method for evaluating the output variable frequency response of a linear dynamic
system proved in this section is to set the Laplace variable s = coj in the transfer
function and evaluate the magnitude and phase, which provide the amplitude ratio
and phase angle, as summarized below.

937
cm

Reference

Amplitude ratio = B/A = \Gicoj)\
Phase angle = 0 = LGicoj)

(H.32)
(H.33)

This result proves that an amazing amount of information about the dynamic
behavior of a linear system can be determined without the effort of evaluating its
inverse Laplace transform.
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