Discrete Models
for Digital
Control

APPENDIX

The chemical processes considered in this book involve continuous variables and
can be modelled using algebraic and differential equations. Also, the control cal-
culations have been introduced as equations involving continuous variables, which
can be implemented using electronic or pneumatic analog calculating equipment.
When all elements in the feedback loop are continuous, the system can be described
using transfer functions involving Laplace transforms; this allows powerful anal-
ysis tools to be applied in determining the stability and performance of control
systems. However, most control calculations are now implemented using digital
computers, which introduce discrete equations in the control system. If the digital
calculations are executed rapidly compared with the process dynamics, the anal-
ysis of continuous systems provides an accurate approximation of the dynamic
behavior.

Because the controller is implemented in digital form, it is important that the
engineer understand the digital forms of the models and control calculations used
in this book. The major applications of digital calculations are summarized below.

Chapter 3: numerical solutions of differential equations using Euler or Runge-
Kutta methods

Chapter 6: least squares fitting of parameters in dynamic models

Chapter 11: digital formulation of the PID controller

Chapter 12: implementation issues for digital control

Chapter 15: lead/lag elements for feedforward control

Chapter 19: digital formulation of the model predictive controller

Chapter 21: decoupling of multiple PID controllers

Chapter 23: dynamic matrix control
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The material in Chapters 11, 12, and 23 is self-contained and will not be repeated
here. The topics covered in this appendix involve the discrete forms of simple
models used in process control. The process models will be represented using X
as the input (cause) and Y as the output (effect). The current sampled value of a
variable will be designated by the subscript n, the previous value by n — 1, and so
forth, with the sample period being constant at Ar.

F.1 = GAIN

The output of a gain is simply calculated as a proportion K of the input:
Yn — KXn (Fl)

F.2 © DEAD TIME

Dead time is simulated as a delay table of length I', which is an integer equal to
6/At. At each time step, the model is executed by moving the past values to the
location representing the next oldest value; the oldest value is discarded, and the
previous value is placed in the table in the location of the most recent value. This
calculation is summarized in Table F.1 with a delay table of length 4 (e.g., a dead
time of 2 units of time and a sample period of 0.5), for eight time steps. The input
is a pulse with a duration of two time steps.

This approach is simple to program and prevents the need to store all past
data, because the table needs to store data for only the length of the dead time.
More computationally efficient implementations move only one data point each
execution and use an additional variable (pointer) to indicate the position of the
oldest data in the table.

F.3 " FIRST-ORDER SYSTEM

Material and energy balances yield first-order differential equations, and the most
common model is first-order with dead time. Thus, the first-order models are used
frequently.

—=KX-Y F.2
Tdt ik

The continuous model can be expressed as a discrete model by assuming that
the input is constant at the value of X,_; over the period 7,_; to 7, (or 0.0 to

TABLE F.1

Example delay table for simulating dead time

Sample number, n 1 2 3

Input, X,

Table entry 1, X,_; (most recent)
Table entry 2, X,,_,

Table entry 3, X,

Table entry 4, X,_4 (oldest)
Quitput; ¥, =X 4
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At). Then, integration of the differential equation from the initial condition ¥, _,
can be performed to determine the value at Y,. The solution can be determined
using the integrating factor or Laplace transform; here the Laplace transform is
demonstrated.

sY(s) —tY,.1 = KX(5)=-Y(s) (E.3)
_ KX(s) ¥
Y(s) = s+ 1 + s+ 1 ED

Note that Y (#,-)) = Y,-;. The input is evaluated as X,.,/s, and the inverse
transform can be taken to give

Y, =K(1—e %)X +e Y, (F.5)

Equation (F.5) gives exact sampled values if the process is truly first-order and the
input is constant over the period. If the input changes during the period, then the
use of X, as a constant results in an approximation. An alternative, approximate
model can be derived by approximating the derivative as a difference, dY /dt ~
(Yp4+1 — Y,)/At. This results in

Y, = K (—A—') Xoot + (1 - 9—’) Yoo (E6)
T T

Equations (F.5) and (F.6) give very similar results when the sample period is small
compared with the time constant. For example, when At/t = 0.05, e 2/7 =
0.951 and (1 — At/7) = 0.95.

These discrete models can be used to represent a process and to implement a
first-order filter, as described in Chapter 12. Also, the gain, dead time, and first-
order discrete models can be combined to give for first-order with dead time:

Yo=Y,  +K(—e ") X,_r_, (F.7)

Equation (F.7) is employed when using least squares to determine the values of
the model parameters from discrete (sampled), empirical input-output data; it is
also used as the prediction model in the IMC and Smith predictor model predictive
control systems.

F.4 © LEAD/LAG

The final discrete control calculation in this appendix is the lead/lag algorithm,

which is as follows for a continuous system:
T]ds + 1
Tigs + 1

A straightforward manner for developing an approximate discrete lead/lag is to

replace each “derivative,” which is the product of the Laplace variable s and a
variable, with its finite difference approximation. This gives

Y(s5)= X(s) (F.8)

Tig (%) +Y, =Ty (X—ATX;‘) + X, (F.9)
This can be rearranged to give
T To 4 T
Vo= | =2 |y, + | &— | x, - | 2~ | X,o1  (F10)
T 4 T LI
At At At
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Equation (F.10) is used in feedforward controllers, as described in Chapter 15, and
decouplers (another form of feedforward), as described in Chapter 21; it is also
used for the combined IMC filter and controller, G £(8)Gep(s), for a controller
whose model has an invertible process factor that is first-order and with a filter
that is first-order.

The discrete models of dynamic systems are in the form of difference equa-
tions, in which the current values of a variable can be expressed as a function of
the last few values of the output and the input(s). In this appendix the difference
equations have been formulated to calculate the nth sampled value. Any equation
of this form can be modified to calculate, for example, the (n + 1)th value. This can
be done by substituting n — 1 = m in the expressions; the result for the first-order
system is

Yot = K — e )X +e72/7Y, (F.11)

Equations (F.5) and (F.11) are equivalent, and both formulations are commonly
used, so the reader should be acquainted with both.



