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This appendix presents a procedure for determining the tuning constants for feed
back controllers that satisfy robust, time-domain performance specifications. The
specifications involve the behavior of the controlled and manipulated variables
and include measurement noise and variable process dynamics, as defined in Ta
ble 9.1. Because the goals are formulated to minimize the controlled-variable IAE
subject to limitation on the manipulated-variable values, the tuning constants are
determined using optimization principles. It is not possible to derive analytical
expressions relating the tuning constants to the IAE and manipulated-variable
transient response; therefore, the control system performance is determined by
numerical solution of the model, and the best tuning values are determined using
an optimization method.

E.1 a SIMULATION OF THE CONTROLLED SYSTEM
TRANSIENT RESPONSE
The single-loop control system considered in this appendix is shown in Fig
ure E.l. The real system consists of elements that are continuous and cannot be
solved analytically. As an approximation, the closed-loop transient is determined
by numerical solution of the equations that define the system. As discussed in
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Block diagram of the feedback control system.

Gpis) = process, valve, and sensor
Gdis) = disturbance
Gcis) = controller

Chapter 3, this approach can provide a set of points very close to the exact tran
sient response—certainly accurate enough for use in the optimization approach.

The model for the feedback process is assumed to be first-order with dead time.
As discussed in Appendix F and Section 6.4, this model can be approximated by
the following algebraic equation at each time step:

(CVfb)„ = Kpi\ - rA' /r)MVn.r- , + e-^CVn,), ,- , (E. l )
The dead time is simulated by a delay, V = 9/At. In equation (E.l) the dead
time must be an integer multiple of At, but advanced modelling methods using
modified ^-transforms enable modelling of systems with noninteger dead times
(Ogata, 1987). The model for the effect of the disturbance on the controlled variable
is first-order.

iCWd)n = Kd\ -e-A'/To)A,-i +e-^lXDiCWd)n.x (E.2)

The noise, (CV^)n, is based on a random perturbation passed through a dynamic
process (Ciancone, 1990). It has a standard deviation, aN. The measured value of
the controlled variable is the sum of the three effects.

CV„ = (CVft),, + (CVA + (CV*),, (E.3)

These equations determine the behavior of the controlled variable given the manip
ulated and disturbance variables. The disturbance D is a step for the disturbance
response cases and zero for the set point cases, and the set point is constant for
disturbance response cases and a step for set point response cases.

The manipulated variable is determined by the feedback controller. The digital
form of the PID controller is explained in Section 11.4 and repeated here:

T A f ( S P „ - C V „ )
MV„ = MV„_, + Kc I (SP„ - CV„) - (SP„_! - CV,,-,) + — Ti

+-^ ( -CV, I+2CV„_ I -CV, ,_2)Ar
(E.4)

Equations (E.l) through (E.4) are solved at each time step from an initial steady
state to a final time of about 6(0 + r), which is sufficient to reach essentially



the final steady state for a well-tuned system. The process equations and digital
controller are executed at a frequency that gives A//(0 + r) = 0.1, which is
sufficient to approximate the continuous system closely although not exactly. By
this method, the transient is evaluated for any set of tuning constants.
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E.2 D OPTIMIZATION OF THE TUNING CONSTANTS
The "best" values of the tuning constants are those that satisfy the performance
goals. One goal requires that the integral of the controlled variable deviation,
measured as IAE, be minimum. The IAE can be approximated using the discrete
samples of the transient response as

IAE
/ • o o M

= |SP - CV| dt*J2 |SP„ - CV„ | At (E.5)

with M the number of points in the transient. The second goal requires that model
error be considered to ensure a reasonable amount of robustness. The approach used
here is to evaluate the entire transient responses for three feedback control systems
with different process models, each with the same controller tuning constants.
Thus, the measure of the controlled-variable performance is modified to be

3 3 / m \

£ lAE,=£ £ |SP„-CV„ |AH
/ = i i = i \ / i = i / /

(E.6)

To include a range of process dynamics, the model parameters all change in a corre
lated manner as 75%, 100%, and + 125% of their nominal values. This corresponds
to changes in the feed flow rate in the example process in Figure 9.1.

The third performance goal places a limitation on the variation of the manip
ulated variable. Here, the manipulated variable is restricted in the extent to which
it may exceed its final steady-state value; the final value (with no measurement
noise) would be -AD/KP or ASP/KP for disturbance or set point response,
respectively. The region of allowable values for the manipulated variable is large
during the initial part of the transient and becomes smaller as the final steady state is
reached to prevent excessive oscillations. The final variability is nonzero, because
higher-frequency noise in the controlled variable is propagated to cause (undesir
able but unavoidable) variation in the manipulated variable. Thus, this third goal
also includes a bound on the variability of the manipulated variable because of the
measurement noise N, which is apparent at the end of the transient response. The
equations for the manipulated-variable bound select the least limiting,

- A D
(MV„), < —- +

Kp
- A D

" u v , - A Z ) - A D ] f - t M W 1

^ M V m a x ) ^ - - _ j e x p ^ - ^ - ^ j
(MV„)2 < (^T-aMV) (E.7)

(MV„)min = min[(MVn),, (MV„)2]
(MV„)min < MV„

with time ?mv measured from the initiation of the input step. The term AD is
replaced with —ASP for a set point change. Several parameters in this equation
are related to the dynamic response of the process. Other parameters are fixed

La u.
cb (5)

FB»FA
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at reasonable values selected by the author to suit the widest range of industrial
process applications, as given in Table E.l. Naturally, this definition will not be
appropriate for all systems, but it should provide good starting values for the tuning
of many feedback systems.

Some values of the tuning constants will result in manipulated-variable values
that violate the constraints defined in equation (E.7). These values will be consid
ered invalid because of the violation and will not be acceptable, even if they result
in a low value for £IAE. Only tuning constant values that result in the constraints
in equation (E.7) being satisfied for the entire transient response will be considered
when minimizing £IAE. This mathematical problem is of the general class of non
linear, constrained optimization. Determining the best tuning consistent with the
goals is conceptually straightforward; the engineer could perform many simula
tions and, by trial and error, eventually find the best values of the tuning constants.
However, the trial-and-error approach would be very time-consuming and require
excessive calculations. The approach taken here was to formulate equations (E.l)
through (E.7) for all time steps and solve them simultaneously using a method
which employs intermediate results to direct the search efficiently toward the best
values of the tuning constants (Ciancone, 1990).

The transient responses in Figure E.2a through c show the results of the op
timization for one value of the fraction dead time, the nominal 0/(0 + t) = 0.3.

TABLE E.1
Parameters used in tuning optimization

Factor Symbol Value Comment

Measurement noise oN 0.55% of scale
Maximum change in MV AMV™ 2.7

Tune the time dependence A 1.5
for the allowable change
inMV
Allowable variation in MV 0"mv 2.5% of range
at steady state, i.e., end of
transient
Disturbance time constant Td = r Depends on

case
Input step magnitude -ASP or AD

iKd = 1)
10% of scale

Model error 25% of each
parameter

Execution period At 0.1(0+ t)

±4oN = ±2.2% of scale
This allows 170% maximum
overshoot at rMv = 0 and decreases
rapidly as time increases
This value reduces the allowable
variation rapidly as time increases,
damping the response
This is approximately 4oN, the noise
propagated via the proportional
mode with KCKP = 1.0
The disturbance time constant is the
nominal feedback time constant
Should be larger than measurement
noise and must be of the sign shown
for the sign conventions in this
appendix
The errors are due to a change in
operating conditions in a nonlinear
process and thus are correlated (all
increase or decrease concurrently)
Relatively small compared with
feedback process



The "optimal" tuning for this case is KPKC = 1.4, T//(0 + t) = 0.7, and
Td/iO + x) = 0.02, using the model parameters from the nominal case. The
transient responses for the three cases, nominal (perfect) model and imismatch,
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FIGURE E.2
Transient response for 0/(0 + t) = 0.3: ia) 75% of nominal feedback model parameters (high flow); ib) 100%

of nominal feedback model parameters (nominal flow); (c) 125% of nominal feedback parameters (low flow).



920

APPENDIX E
Determining
Controller Constants
to Satisfy Performance
Specifications

demonstrate the importance of explicitly considering model error. Note that the
feedback control is not too aggressive for the nominal case and is quite slow for
the 75% case. However, the 125% case involving a slower process dynamics and a
higher feedback process gain (i.e., smaller feed flow in the example process) is at
the limit of the allowable manipulated-variable variation and exhibits oscillatory
behavior. Thus, making the tuning more aggressive would result in unacceptable
behavior for process dynamics for the 125% case, which is considered to occur
often in this problem definition. Thus, all three goals are relevant in determining
the best initial controller tuning. Finally, model errors larger than anticipated in the
definition could cause closed-loop behavior deemed unacceptable; this situation
would be rectified during fine tuning.

REFERENCES

Ciancone, R., "Selecting Appropriate Control Technology," undergraduate
research project, McMaster University, 1990.

Ogata, K., Discrete-Time Control Systems, Prentice-Hall, Englewood Cliffs,
NJ, 1987.


