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Dynamic

Models
D.1 ii METHOD OF MOMENTS
Real processes have complex dynamic responses and require models with many
parameters to be characterized accurately. However, the engineer often seeks a
simple model with few parameters to describe the main aspects of the dynamic
behavior. Examples throughout this book demonstrate that the first-order-with-
dead-time model is adequate for the process control analysis of many, but not all,
processes. In this section a method is developed for determining a few parameters
that can be used to fit a model to the expected dynamic behavior; this is the method
of moments. The application of the method of moments described in this appendix
was demonstrated by Paynter and Takahashi (1956) and Gibilaro and Lee (1969).

The basic approach is to evaluate several moments of the output behavior and
use these to characterize the dynamic behavior. Thus, the first step is to define a
moment.

Further moments are usually defined with respect to the first moment, which is the
mean; thus, the moments of the variable Yit) about its mean are
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Given a function Y it) or a set of data Y, the integrals in equations (D. 1) and (D.2)
can be evaluated as long as they are bounded.

The moments can also be evaluated from the Laplace transform of a variable
in a particularly simple manner, which is the application of moments in this book.
The development begins with the input-output model of a single-variable system
in transfer function form.

Yis) = Gis)Xis) (D.3)
with Xis) being the input, Yis) the output, and G(s) the transfer function, as
defined in equation (4.45). The moment of the output variable will be evaluated
for a unit impulse input, for which Xis) = 1 and all integrals in the moment
equations are bounded. From the definition of the Laplace transform and equation
(D.3),

Jo
e~stYit)dt = Yis) = Gis)Xis) = Gis) (D.4)

Now, it is shown that any moment of an output in response to a unit impulse
can be evaluated directly from the transfer function, using the result in equation
(D.4) to evaluate the numerator and denominator of equation (D.l).
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Equation (D.6) is verified using the results from equation (D.4).
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(D.7)
t*Yit)dt

The method of moments is used in this book for one important application:
determining the characteristic time of a process. The first moment is used as
the characteristic time to "time-scale" the dynamic responses in the dimensional
analysis presented in the tuning correlations in Chapter 9. For example, the first
moment is evaluated for a first-order-with-dead-time process model to be
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This result was used by Jeffreson (1976) in performance correlations.
The sum of the dead time and time constant is also the time at which the

output response for a step in the manipulated variable reaches 63% of its final
value (*63%) for the first-order-with-dead-time model. As a rough approximation,
the first moment of many common transfer functions in the book can be used
as an estimate of t&%. The first moment for a transfer function with dead time,
multiple first-order numerator terms, and multiple first-order denominator terms
is evaluated as follows:
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This is the basis for the approximation given in Chapter 5 that t&% is approximately
equal to the sum of the dead times and time constants for a series of noninteracting
first-order-with-dead-time systems. This approximation is useful for estimating the
general time for a complex series system to respond, but it does not give sufficient
information in itself to design or tune controllers.
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An additional application for the method of moments is in estimating the
parameters in a simple model based on the parameters in a more complex model.
In this approach, several moments of the simple and more complex models are
determined analytically, and the unknown parameters are determined for the simple
model. Naturally, one linearly independent moment equation is required for each
parameter. This is demonstrated as follows by determining the parameters for a
first-order-with-dead-time model based on a known second-order-with-dead-time
model.

SECOND-ORDER MODEL.

Gis) = Kp2e-025

(T2iJ + l)(T22^+l)

poo
Unit impulse/ Yit)dt: Kp2

Jo
First moment: (02 + x2\ + x22)

Second moment: d\ + 20(r2i + x22) — 2x2\ x22 + 2(t2i + T22):

FIRST-ORDER MODEL:
K p i e - ^
X\S + 1

1Unit impulse / Yit)dt: Kpl

First moment: (0i + xx)
Second moment: 02 + 20\ x\ + 2x\

These equations can be applied to the second-order-with-dead-time model in ques
tion 6.5 to answer part (ft) of the question: what is an approximate first-order-with-
dead-time model? The results are summarized as follows:

Second-order:
Tds) _ 1.87g-26'
Tds) " i2s + \)i2.1s + \)

Equating the moments gives
*-„, = 1.87
Mi = Bx + x\ = 2.6 + 2.0 + 2.7 = 7.3
M2 = 62+ 20j t, + 2t,2 = 64.98

giving
01 = 3.3 xx = 4.0

Approximate first-order:
Tds) l.Sle~3-3s
Tds) 4s+ \
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Some control analysis methods are designed for process models that do not contain
dead time; i.e., the transfer function models must be ratios of polynomials in the
numerator and denominator. To meet this requirement, the dead time in a transfer
function model ie~ds) must be replaced by an approximation. One straightforward
approach would be to expand the dead time in a Taylor series. However, better
approximations are available using the Pade* approximations (Truxal, 1955). The
first-order Pade* approximation is given in the following:

Pade* Dead Time
Approximations

-0SPade" approximation: e os =
1 - jd/2)s
1 + id/2)s (D.13)

As an example, the Pade* approximation is applied to the simple first-order-
with-dead-time transfer function model.

Exact model: Y i s ) n i . l . f o r *= Gis) = (D.14)X i s ) 5 s + \
An approximate model without the exponential term can be determined by substi
tuting the Pade* approximation for the dead time to yield the following:

Approximate model: W=GW = _L0£Z | ^ ( d . , 5 )
X i s ) 5 * + 1 ( 1 + 2 . 5 $ )

The dynamic responses for the exact and approximate models are now compared.
The time-domain responses of the output, Y, to a step in the input variable, X, are
given in Figure D.l for both the exact and approximate models. The Pade* model
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FIGURE D.1

Step responses of exact first-order-with-dead-time model (solid) and
first-order-with-Pade'-approximation model (dashed).



914 shows an approximate delay, but it experiences an inverse response not present in
MmfflMKmMMmmmm the output of the exact model.
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